lrl-modelcloud's picture
Create README.md
4a3ac00 verified
|
raw
history blame
1.62 kB
metadata
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
language:
  - en
base_model: tiiuae/Falcon3-10B-Instruct
pipeline_tag: text-generation
tags:
  - gptqmodel
  - modelcloud
  - chat
  - falcon3
  - instruct
  - int4
  - gptq
  - 4bit
  - W4A16

image/png

This model has been quantized using GPTQModel.

  • bits: 4
  • dynamic: null
  • group_size: 32
  • desc_act: true
  • static_groups: false
  • sym: true
  • lm_head: false
  • true_sequential: true
  • quant_method: "gptq"
  • checkpoint_format: "gptq"
  • meta

Example:

from transformers import AutoTokenizer
from gptqmodel import GPTQModel

tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1")
model = GPTQModel.load("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1")

messages = [
    {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

print(result)