lrl-modelcloud commited on
Commit
4a3ac00
1 Parent(s): b34cdac

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: falcon-llm-license
4
+ license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
5
+ language:
6
+ - en
7
+ base_model: tiiuae/Falcon3-10B-Instruct
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - gptqmodel
11
+ - modelcloud
12
+ - chat
13
+ - falcon3
14
+ - instruct
15
+ - int4
16
+ - gptq
17
+ - 4bit
18
+ - W4A16
19
+ ---
20
+
21
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/uTEB9pmSp9atF4tUKNVaP.png)
22
+
23
+
24
+ This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
25
+
26
+ - **bits**: 4
27
+ - **dynamic**: null
28
+ - **group_size**: 32
29
+ - **desc_act**: true
30
+ - **static_groups**: false
31
+ - **sym**: true
32
+ - **lm_head**: false
33
+ - **true_sequential**: true
34
+ - **quant_method**: "gptq"
35
+ - **checkpoint_format**: "gptq"
36
+ - **meta**:
37
+ - **quantizer**: gptqmodel:1.4.4
38
+ - **uri**: https://github.com/modelcloud/gptqmodel
39
+ - **damp_percent**: 0.1
40
+ - **damp_auto_increment**: 0.0025
41
+
42
+
43
+ ## Example:
44
+ ```python
45
+ from transformers import AutoTokenizer
46
+ from gptqmodel import GPTQModel
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1")
49
+ model = GPTQModel.load("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1")
50
+
51
+ messages = [
52
+ {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
53
+ ]
54
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
55
+
56
+ outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
57
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
58
+
59
+ print(result)
60
+ ```