swin-small-finetuned-cifar100

This model is a fine-tuned version of microsoft/swin-small-patch4-window7-224 on the cifar100 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6281
  • Accuracy: 0.8938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.72 1.0 781 0.6691 0.8077
0.6944 2.0 1562 0.4797 0.8495
0.2794 3.0 2343 0.4338 0.869
0.2569 4.0 3124 0.4263 0.879
0.1417 5.0 3905 0.4385 0.8819
0.0961 6.0 4686 0.4720 0.8854
0.0584 7.0 5467 0.4941 0.885
0.0351 8.0 6248 0.5253 0.885
0.0107 9.0 7029 0.5598 0.8887
0.0118 10.0 7810 0.5998 0.8858
0.0097 11.0 8591 0.5957 0.8941
0.0044 12.0 9372 0.6237 0.8912
0.0013 13.0 10153 0.6286 0.8929
0.0102 14.0 10934 0.6281 0.8938

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train MazenAmria/swin-small-finetuned-cifar100

Evaluation results