Edit model card

(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0.

Poly-platypus-ko

img
Polyglot-ko + KO-platypus2 = Poly-platypus-ko

Model Details

Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
Poly-platypus-ko is an auto-regressive language model based on the polyglot-ko transformer architecture.

Repo Link
Github KO-platypus2: KO-platypus2
Github Poly-platypus-ko: Poly-platypus-ko

Base Model
Polyglot-ko-12.8b

Fine-tuning method
Same as KO-Platypus2.

Training Dataset
I use KOpen-platypus dataset.
I use A100 GPU 40GB and COLAB, when trianing.

Model Bechmark1

KO-LLM leaderboard

img

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
Poly-platypus-ko-12.8b(ours) 44.95 35.15 50.39 25.58 38.74 74.88
KoT-platypus2-7B 45.62 38.05 49.63 34.68 37.69 68.08
KO-platypus2-7B-EX 45.41 39.08 50.86 34.60 37.94 64.55
42MARU/polyglot-ko-12.8b-instruct 43.89 36.35 51.59 26.38 45.16 59.98
FINDA-FIT/llama-p 43.63 39.59 50.74 33.85 38.09 55.87

Compare with Top 4 SOTA models. (update: 10/01)


Model Benchmark2

LM Eval Harness - Korean (polyglot branch)

Question Answering (QA)

COPA (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.7745 0.7676 0.7775 0.7887
Polyglot-ko-12.8b 0.7937 0.8108 0.8037 0.8369
Llama-2-Ko-7b 20B 0.7388 0.7626 0.7808 0.7979
Llama-2-Ko-7b 40B 0.7436 0.7927 0.8037 0.8259
KO-platypus2-7B-EX 0.7509 0.7899 0.8029 0.8290
KoT-platypus2-7B 0.7517 0.7868 0.8009 0.8239
Poly-platypus-ko-12.8b(ours) 0.7876 0.8099 0.8008 0.8239

Natural Language Inference (NLI; 자연어 추론 평가)

HellaSwag (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.5976 0.5998 0.5979 0.6208
Polyglot-ko-12.8b 0.5954 0.6306 0.6098 0.6118
Llama-2-Ko-7b 20B 0.4518 0.4668 0.4726 0.4828
Llama-2-Ko-7b 40B 0.4562 0.4657 0.4698 0.4774
KO-platypus2-7B-EX 0.4571 0.4461 0.4371 0.4525
KoT-platypus2-7B 0.4432 0.4382 0.4550 0.4534
Poly-platypus-ko-12.8b(ours) 0.4838 0.4858 0.5005 0.5062

Question Answering (QA)

BoolQ (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.4356 0.5698 0.5187 0.5236
Polyglot-ko-12.8b 0.4818 0.6041 0.6289 0.6448
Llama-2-Ko-7b 20B 0.3607 0.6797 0.6801 0.6622
Llama-2-Ko-7b 40B 0.5786 0.6977 0.7084 0.7144
KO-platypus2-7B-EX 0.6028 0.6979 0.7016 0.6988
KoT-platypus2-7B 0.6142 0.6757 0.6839 0.6878
Poly-platypus-ko-12.8b(ours) 0.4888 0.6520 0.6568 0.6835

Classification

SentiNeg (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.3394 0.8841 0.8808 0.9521
Polyglot-ko-12.8b 0.9117 0.9015 0.9345 0.9723
Llama-2-Ko-7b 20B 0.4855 0.8295 0.8711 0.8513
Llama-2-Ko-7b 40B 0.4594 0.7611 0.7276 0.9370
KO-platypus2-7B-EX 0.5821 0.7653 0.7991 0.8643
KoT-platypus2-7B 0.6127 0.7199 0.7531 0.8381
Poly-platypus-ko-12.8b(ours) 0.8490 0.9597 0.9723 0.9847

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "MarkrAI/kyujin-Poly-platypus-ko-12.8b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)

Readme format: kyujinpy/KoT-platypus2-7B


Downloads last month
4,588
Safetensors
Model size
12.9B params
Tensor type
F32
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train MarkrAI/kyujin-Poly-platypus-ko-12.8b