Model card for MHanzl/tf_efficientnet_b0.in1k_ft_df24m_224
Model Details
- Model Type: Danish Fungi Classification
- Model Stats:
- Params (M): 4.2
- Image size: 224 x 224
- Papers:
- Original: ??
- Train Dataset: DF24M --> https://sites.google.com/view/danish-fungi-dataset
Model Usage
Image Embeddings
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:MHanzl/tf_efficientnet_b0.in1k_ft_df24m_224", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((224, 224)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0))
# output is a (1, num_features) shaped tensor
Citation
@InProceedings{Picek_2022_WACV,
author = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1525-1535}
}
@article{picek2022automatic,
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
journal={Sensors},
volume={22},
number={2},
pages={633},
year={2022},
publisher={Multidisciplinary Digital Publishing Institute}
}
- Downloads last month
- 12
Inference API (serverless) does not yet support DanishFungi models for this pipeline type.