speechless-code-mistral-7b-v1.0
NOTE: Requantized using WizardLM_evol_instruct_V2_196k for calibration
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
Use the following dataset to fine-tune mistralai/Mistral-7B-v0.1 in order to improve the model's reasoning and planning abilities.
Total 201,981 samples.
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
- garage-bAInd/Open-Platypus: 100%, 24,926 samples.
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
- Spider: 8,659 samples
HumanEval
Metric | Value |
---|---|
humaneval-python | 50.0 |
CodeLlama-34B-Python: 53.29
CodeLlama-34B-Instruct: 50.79
CodeLlama-13B-Instruct: 50.6
CodeLlama-34B: 45.11
CodeLlama-13B-Python: 42.89
CodeLlama-13B: 35.07
lm-evaluation-harness
Metric | Value |
---|---|
ARC | 59.64 |
HellaSwag | 82.25 |
MMLU | 61.33 |
TruthfulQA | 48.45 |
Average | 62.92 |
Parameters
lr | 2e-4 |
lr_scheduler_type | cosine |
weight_decay | 0.0 |
optim | paged_adamw_8bit |
flash_attention | True |
rerope | False |
max_new_tokens | 4096 |
num_train_epochs | 2 |
bits | 4 |
lora_r | 64 |
lora_alpha | 16 |
lora_dropout | 0.05 |
double_quant | True |
quant_type | nf4 |
dataset_format | airoboros |
mini_batch_size | 2 |
grandient_accumulation_steps | 32 |
bf16 | True |
A40-48G x 2
epoch | 2.0 |
etrain_loss | 0.5 |
etrain_runtime | 1 day, 10:25:26.77 |
etrain_samples_per_second | 3.194 |
etrain_steps_per_second | 0.025 |
eeval_loss | 0.5146 |
eeval_runtime | 0:00:25.04 |
eeval_samples_per_second | 7.985 |
eeval_steps_per_second |
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.