Edit model card

Mistral-7B-codealpaca

I am thrilled to introduce my Mistral-7B-codealpaca model. This variant is optimized and demonstrates potential in assisting developers as a coding companion. I welcome contributions from testers and enthusiasts to help evaluate its performance.

Training Details

I trained the model using 3xRTX 3090 for 118 hours. Built with Axolotl

Quantised Model Links:

  1. https://huggingface.co/TheBloke/Mistral-7B-codealpaca-lora-GPTQ
  2. https://huggingface.co/TheBloke/Mistral-7B-codealpaca-lora-GGUF
  3. https://huggingface.co/TheBloke/Mistral-7B-codealpaca-lora-AWQ

Dataset:

Prompt template: Alpaca

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

Performance (evalplus)

Human eval plus: https://github.com/evalplus/evalplus

image/png

Well, the results are better than I expected:

  • Base: {'pass@1': 0.47560975609756095}
  • Base + Extra: {'pass@1': 0.4329268292682927}

For reference, I've provided the performance of the original Mistral model alongside my Mistral-7B-code-16k-qlora model.

** Nondzu/Mistral-7B-code-16k-qlora**:

  • Base: {'pass@1': 0.3353658536585366}
  • Base + Extra: {'pass@1': 0.2804878048780488}

** mistralai/Mistral-7B-Instruct-v0.1**:

  • Base: {'pass@1': 0.2926829268292683}
  • Base + Extra: {'pass@1': 0.24390243902439024}

Model Configuration:

Here are the configurations for my Mistral-7B-codealpaca-lora:

base_model: mistralai/Mistral-7B-Instruct-v0.1
base_model_config: mistralai/Mistral-7B-Instruct-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
  - path: theblackcat102/evol-codealpaca-v1
    type: oasst
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./nondzu/Mistral-7B-codealpaca-test14
adapter: lora
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

image/png

Additional Projects:

For other related projects, you can check out:

Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.