File size: 2,915 Bytes
e0ed750
 
 
 
 
 
 
 
 
 
 
 
dd2cf59
 
7981e4e
 
 
1eeed94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7981e4e
 
 
 
 
1eeed94
7981e4e
d4776d1
7981e4e
 
 
d4776d1
7981e4e
d4776d1
7981e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4776d1
 
31e9a7d
d4776d1
31e9a7d
7981e4e
1eeed94
7981e4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
language:
- en
metrics:
- f1
tags:
- cell segmentation
- stardist
- hover-net
library_name: transformers
pipeline_tag: image-segmentation
datasets:
- Lewislou/cell_samples
---


# Model Card for cell-seg-sribd

<!-- Provide a quick summary of what the model is/does. -->

This repository provides the solution of team Sribd-med for NeurIPS-CellSeg Challenge. The details of our method are described in our paper [Multi-stream Cell Segmentation with Low-level Cues for Multi-modality Images]. Some parts of the codes are from the baseline codes of the NeurIPS-CellSeg-Baseline repository,

You can reproduce our method as follows step by step:


### How to Get Started with the Model

Install requirements by python -m pip install -r requirements.txt

## Training Details

### Training Data

The competition training and tuning data can be downloaded from https://neurips22-cellseg.grand-challenge.org/dataset/ Besides, you can download three publiced data from the following link: Cellpose: https://www.cellpose.org/dataset  Omnipose: http://www.cellpose.org/dataset_omnipose Sartorius: https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/overview 

## Environments and Requirements:
Install requirements by

```shell
python -m pip install -r requirements.txt
```

### How to use

Here is how to use this model:

```python

from skimage import io, segmentation, morphology, measure, exposure
from sribd_cellseg_models import MultiStreamCellSegModel,ModelConfig
import numpy as np
import tifffile as tif
import requests
import torch

img_name = 'cell_00023.tiff'
def normalize_channel(img, lower=1, upper=99):
    non_zero_vals = img[np.nonzero(img)]
    percentiles = np.percentile(non_zero_vals, [lower, upper])
    if percentiles[1] - percentiles[0] > 0.001:
        img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8')
    else:
        img_norm = img
    return img_norm.astype(np.uint8)
if img_name.endswith('.tif') or img_name.endswith('.tiff'):
    img_data = tif.imread(img_name)
else:
    img_data = io.imread(img_name)
        # normalize image data
if len(img_data.shape) == 2:
    img_data = np.repeat(np.expand_dims(img_data, axis=-1), 3, axis=-1)
elif len(img_data.shape) == 3 and img_data.shape[-1] > 3:
    img_data = img_data[:,:, :3]
else:
    pass
pre_img_data = np.zeros(img_data.shape, dtype=np.uint8)
for i in range(3):
    img_channel_i = img_data[:,:,i]
    if len(img_channel_i[np.nonzero(img_channel_i)])>0:
        pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
#dummy_input = np.zeros((512,512,3)).astype(np.uint8)
my_model = MultiStreamCellSegModel.from_pretrained("Lewislou/cellseg_sribd")
checkpoints = torch.load('model.pt')
my_model.__init__(ModelConfig())
my_model.load_checkpoints(checkpoints)
with torch.no_grad():
    output = my_model(pre_img_data)

```