Lewislou commited on
Commit
1eeed94
1 Parent(s): 2ae6c81

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -3
README.md CHANGED
@@ -15,6 +15,38 @@ datasets:
15
  ---
16
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
 
20
 
@@ -23,8 +55,9 @@ datasets:
23
  Here is how to use this model:
24
 
25
  ```python
26
- from transformers import cellseg_sribd
27
  from skimage import io, segmentation, morphology, measure, exposure
 
28
  import numpy as np
29
  import tifffile as tif
30
  import requests
@@ -56,9 +89,11 @@ for i in range(3):
56
  pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
57
 
58
 
 
 
 
59
 
60
- model = cellseg_sribd.from_pretrained("Lewislou/cellseg_sribd")
61
  with torch.no_grad():
62
- output = model(pre_img_data)
63
 
64
  ```
 
15
  ---
16
 
17
 
18
+ # Model Card for cell-seg-sribd
19
+
20
+ <!-- Provide a quick summary of what the model is/does. -->
21
+
22
+ This repository provides the solution of team Sribd-med for NeurIPS-CellSeg Challenge. The details of our method are described in our paper [Multi-stream Cell Segmentation with Low-level Cues for Multi-modality Images]. Some parts of the codes are from the baseline codes of the NeurIPS-CellSeg-Baseline repository,
23
+
24
+ You can reproduce our method as follows step by step:
25
+
26
+
27
+ ### How to Get Started with the Model
28
+
29
+ Install requirements by python -m pip install -r requirements.txt
30
+
31
+ ## Training Details
32
+
33
+ ### Training Data
34
+
35
+ The competition training and tuning data can be downloaded from https://neurips22-cellseg.grand-challenge.org/dataset/ Besides, you can download three publiced data from the following link: Cellpose: https://www.cellpose.org/dataset Omnipose: http://www.cellpose.org/dataset_omnipose Sartorius: https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/overview
36
+
37
+ ## Environments and Requirements:
38
+ Install requirements by
39
+
40
+ ```shell
41
+ python -m pip install -r requirements.txt
42
+ ```
43
+
44
+ ## Dataset
45
+ The competition training and tuning data can be downloaded from https://neurips22-cellseg.grand-challenge.org/dataset/
46
+ Besides, you can download three publiced data from the following link:
47
+ Cellpose: https://www.cellpose.org/dataset 
48
+ Omnipose: http://www.cellpose.org/dataset_omnipose
49
+ Sartorius: https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/overview 
50
 
51
 
52
 
 
55
  Here is how to use this model:
56
 
57
  ```python
58
+
59
  from skimage import io, segmentation, morphology, measure, exposure
60
+ from cell_sribd_model import MyModel
61
  import numpy as np
62
  import tifffile as tif
63
  import requests
 
89
  pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
90
 
91
 
92
+ #config = ModelConfig()
93
+ #print(config)
94
+ my_model = MyModel.from_pretrained("Lewislou/cellseg_sribd")
95
 
 
96
  with torch.no_grad():
97
+ output = my_model(pre_img_data)
98
 
99
  ```