Update README.md
Browse files
README.md
CHANGED
@@ -10,4 +10,53 @@ tags:
|
|
10 |
- hover-net
|
11 |
library_name: transformers
|
12 |
pipeline_tag: image-segmentation
|
13 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- hover-net
|
11 |
library_name: transformers
|
12 |
pipeline_tag: image-segmentation
|
13 |
+
---
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
### How to use
|
20 |
+
|
21 |
+
Here is how to use this model:
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import cellseg_sribd
|
25 |
+
from skimage import io, segmentation, morphology, measure, exposure
|
26 |
+
import numpy as np
|
27 |
+
import tifffile as tif
|
28 |
+
import requests
|
29 |
+
|
30 |
+
img_name = 'cell_00010.png'
|
31 |
+
def normalize_channel(img, lower=1, upper=99):
|
32 |
+
non_zero_vals = img[np.nonzero(img)]
|
33 |
+
percentiles = np.percentile(non_zero_vals, [lower, upper])
|
34 |
+
if percentiles[1] - percentiles[0] > 0.001:
|
35 |
+
img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8')
|
36 |
+
else:
|
37 |
+
img_norm = img
|
38 |
+
return img_norm.astype(np.uint8)
|
39 |
+
if img_name.endswith('.tif') or img_name.endswith('.tiff'):
|
40 |
+
img_data = tif.imread(img_name)
|
41 |
+
else:
|
42 |
+
img_data = io.imread(img_name)
|
43 |
+
# normalize image data
|
44 |
+
if len(img_data.shape) == 2:
|
45 |
+
img_data = np.repeat(np.expand_dims(img_data, axis=-1), 3, axis=-1)
|
46 |
+
elif len(img_data.shape) == 3 and img_data.shape[-1] > 3:
|
47 |
+
img_data = img_data[:,:, :3]
|
48 |
+
else:
|
49 |
+
pass
|
50 |
+
pre_img_data = np.zeros(img_data.shape, dtype=np.uint8)
|
51 |
+
for i in range(3):
|
52 |
+
img_channel_i = img_data[:,:,i]
|
53 |
+
if len(img_channel_i[np.nonzero(img_channel_i)])>0:
|
54 |
+
pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
model = cellseg_sribd.from_pretrained("Lewislou/cellseg_sribd")
|
59 |
+
with torch.no_grad():
|
60 |
+
output = model(pre_img_data)
|
61 |
+
|
62 |
+
```
|