Update README.md
Browse files
README.md
CHANGED
@@ -48,12 +48,13 @@ Here is how to use this model:
|
|
48 |
```python
|
49 |
|
50 |
from skimage import io, segmentation, morphology, measure, exposure
|
51 |
-
from
|
52 |
import numpy as np
|
53 |
import tifffile as tif
|
54 |
import requests
|
|
|
55 |
|
56 |
-
img_name = '
|
57 |
def normalize_channel(img, lower=1, upper=99):
|
58 |
non_zero_vals = img[np.nonzero(img)]
|
59 |
percentiles = np.percentile(non_zero_vals, [lower, upper])
|
@@ -78,12 +79,10 @@ for i in range(3):
|
|
78 |
img_channel_i = img_data[:,:,i]
|
79 |
if len(img_channel_i[np.nonzero(img_channel_i)])>0:
|
80 |
pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
|
81 |
-
|
82 |
-
|
83 |
-
#config = ModelConfig()
|
84 |
-
#print(config)
|
85 |
-
my_model = MyModel.from_pretrained("Lewislou/cellseg_sribd")
|
86 |
checkpoints = torch.load('model.pt')
|
|
|
87 |
my_model.load_checkpoints(checkpoints)
|
88 |
with torch.no_grad():
|
89 |
output = my_model(pre_img_data)
|
|
|
48 |
```python
|
49 |
|
50 |
from skimage import io, segmentation, morphology, measure, exposure
|
51 |
+
from sribd_cellseg_models import MultiStreamCellSegModel,ModelConfig
|
52 |
import numpy as np
|
53 |
import tifffile as tif
|
54 |
import requests
|
55 |
+
import torch
|
56 |
|
57 |
+
img_name = 'cell_00023.tiff'
|
58 |
def normalize_channel(img, lower=1, upper=99):
|
59 |
non_zero_vals = img[np.nonzero(img)]
|
60 |
percentiles = np.percentile(non_zero_vals, [lower, upper])
|
|
|
79 |
img_channel_i = img_data[:,:,i]
|
80 |
if len(img_channel_i[np.nonzero(img_channel_i)])>0:
|
81 |
pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
|
82 |
+
#dummy_input = np.zeros((512,512,3)).astype(np.uint8)
|
83 |
+
my_model = MultiStreamCellSegModel.from_pretrained("Lewislou/cellseg_sribd")
|
|
|
|
|
|
|
84 |
checkpoints = torch.load('model.pt')
|
85 |
+
my_model.__init__(ModelConfig())
|
86 |
my_model.load_checkpoints(checkpoints)
|
87 |
with torch.no_grad():
|
88 |
output = my_model(pre_img_data)
|