Visualize in Weights & Biases

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6501
  • Accuracy: 0.87
  • Precision: 0.8803
  • Recall: 0.87
  • F1: 0.8627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.1743 1.0 113 2.0604 0.38 0.5273 0.38 0.3101
1.6179 2.0 226 1.4299 0.62 0.6136 0.62 0.5877
1.0981 3.0 339 1.0223 0.79 0.8516 0.79 0.7669
0.9785 4.0 452 0.8722 0.71 0.7748 0.71 0.6733
0.8834 5.0 565 0.8363 0.76 0.7691 0.76 0.7449
0.4936 6.0 678 0.6241 0.82 0.8313 0.82 0.8193
0.2772 7.0 791 0.5648 0.85 0.8623 0.85 0.8459
0.1213 8.0 904 0.6919 0.81 0.8429 0.81 0.7997
0.0958 9.0 1017 0.5527 0.86 0.8682 0.86 0.8541
0.0194 10.0 1130 0.6840 0.85 0.8645 0.85 0.8420
0.0151 11.0 1243 0.6214 0.86 0.8642 0.86 0.8542
0.1239 12.0 1356 0.6501 0.87 0.8803 0.87 0.8627
0.0049 13.0 1469 0.6651 0.87 0.8803 0.87 0.8627
0.0043 14.0 1582 0.7188 0.87 0.8803 0.87 0.8627
0.0035 15.0 1695 0.6808 0.87 0.8803 0.87 0.8627

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Leotrim/distilhubert-finetuned-gtzan

Finetuned
(421)
this model

Dataset used to train Leotrim/distilhubert-finetuned-gtzan

Evaluation results