finetuning-tf-sentiment-analysis-bert-base-model
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.5162
- Train Accuracy: 0.7651
- Validation Loss: 0.2817
- Validation Accuracy: 0.8804
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.7283 | 0.7244 | 0.6959 | 0.5 | 0 |
0.6945 | 0.5349 | 0.6792 | 0.6378 | 1 |
0.5162 | 0.7651 | 0.2817 | 0.8804 | 2 |
Framework versions
- Transformers 4.41.2
- TensorFlow 2.16.1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for Jimheaver/finetuning-tf-sentiment-analysis-bert-base-model
Base model
google-bert/bert-base-uncased