Edit model card

InnerILLM-7B-slerp

InnerILLM-7B-slerp is a merge of the following models using LazyMergekit:

Average model loss 0.8070214592665433

I used this testing script that loads your local model, pulls the latest data from cortex and calculates the loss: avg loss script

🧩 Configuration

slices:
  - sources:
      - model: OpenPipe/mistral-ft-optimized-1218
        layer_range: [0, 32]
      - model: mlabonne/NeuralHermes-2.5-Mistral-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "InnerI/InnerILLM-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.09
AI2 Reasoning Challenge (25-Shot) 67.58
HellaSwag (10-Shot) 86.19
MMLU (5-Shot) 64.15
TruthfulQA (0-shot) 59.84
Winogrande (5-shot) 80.11
GSM8k (5-shot) 68.69
Downloads last month
73
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for InnerI/InnerILLM-7B-slerp

Collection including InnerI/InnerILLM-7B-slerp

Evaluation results