Edit model card

Imene/vit-base-patch16-384-wi3

This model is a fine-tuned version of google/vit-base-patch16-384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2020
  • Train Accuracy: 0.9984
  • Train Top-3-accuracy: 0.9997
  • Validation Loss: 1.4297
  • Validation Accuracy: 0.6195
  • Validation Top-3-accuracy: 0.8298
  • Epoch: 11

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
3.6575 0.0902 0.1945 3.1772 0.2028 0.3980 0
2.5870 0.3473 0.6048 2.3845 0.3717 0.6208 1
1.8813 0.5553 0.7895 2.0262 0.4431 0.7196 2
1.4326 0.6815 0.8754 1.8856 0.4793 0.7384 3
1.0572 0.7989 0.9439 1.6570 0.5369 0.7960 4
0.7740 0.8838 0.9749 1.6103 0.5557 0.7960 5
0.5593 0.9417 0.9900 1.5303 0.5695 0.8173 6
0.4151 0.9709 0.9975 1.4939 0.5795 0.8185 7
0.3176 0.9884 0.9978 1.4553 0.5832 0.8248 8
0.2582 0.9950 0.9991 1.4500 0.6020 0.8248 9
0.2222 0.9978 0.9994 1.4315 0.6108 0.8310 10
0.2020 0.9984 0.9997 1.4297 0.6195 0.8298 11

Framework versions

  • Transformers 4.21.3
  • TensorFlow 2.8.2
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.