Imene/vit-base-patch16-224-in21k-Wr

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3104
  • Train Accuracy: 0.9956
  • Train Top-3-accuracy: 0.9981
  • Validation Loss: 1.6041
  • Validation Accuracy: 0.5770
  • Validation Top-3-accuracy: 0.8035
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
3.8300 0.0583 0.1381 3.6801 0.0951 0.2203 0
3.2915 0.2418 0.4557 3.0277 0.3004 0.5507 1
2.6535 0.4438 0.7106 2.5932 0.3780 0.6546 2
2.0541 0.6308 0.8575 2.2998 0.4556 0.6871 3
1.4622 0.7924 0.9496 2.0054 0.5056 0.7234 4
0.9098 0.9201 0.9887 1.8079 0.5695 0.7785 5
0.5220 0.9821 0.9969 1.6444 0.5845 0.7922 6
0.3104 0.9956 0.9981 1.6041 0.5770 0.8035 7

Framework versions

  • Transformers 4.21.3
  • TensorFlow 2.8.2
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
24
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.