Back to all models
translation mask_token:
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚡️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

Helsinki-NLP/opus-mt-itc-en Helsinki-NLP/opus-mt-itc-en
N/a downloads
last 30 days

pytorch

tf

Contributed by

Language Technology Research Group at the University of Helsinki university
1 team member · 1325 models

How to use this model directly from the 🤗/transformers library:

			
Copy to clipboard
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-itc-en") model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-itc-en")
Uploaded in S3

itc-eng

  • source group: Italic languages

  • target group: English

  • OPUS readme: itc-eng

  • model: transformer

  • source language(s): arg ast cat cos egl ext fra frm_Latn gcf_Latn glg hat ind ita lad lad_Latn lat_Latn lij lld_Latn lmo max_Latn mfe min mwl oci pap pms por roh ron scn spa tmw_Latn vec wln zlm_Latn zsm_Latn

  • target language(s): eng

  • model: transformer

  • pre-processing: normalization + SentencePiece (spm32k,spm32k)

  • download original weights: opus2m-2020-08-01.zip

  • test set translations: opus2m-2020-08-01.test.txt

  • test set scores: opus2m-2020-08-01.eval.txt

Benchmarks

testset BLEU chr-F
newsdev2016-enro-roneng.ron.eng 36.5 0.628
newsdiscussdev2015-enfr-fraeng.fra.eng 30.9 0.561
newsdiscusstest2015-enfr-fraeng.fra.eng 35.5 0.590
newssyscomb2009-fraeng.fra.eng 29.2 0.560
newssyscomb2009-itaeng.ita.eng 32.2 0.583
newssyscomb2009-spaeng.spa.eng 29.3 0.563
news-test2008-fraeng.fra.eng 25.2 0.531
news-test2008-spaeng.spa.eng 26.3 0.539
newstest2009-fraeng.fra.eng 28.5 0.555
newstest2009-itaeng.ita.eng 31.6 0.578
newstest2009-spaeng.spa.eng 28.7 0.558
newstest2010-fraeng.fra.eng 29.7 0.571
newstest2010-spaeng.spa.eng 32.8 0.593
newstest2011-fraeng.fra.eng 30.9 0.580
newstest2011-spaeng.spa.eng 31.8 0.582
newstest2012-fraeng.fra.eng 31.1 0.576
newstest2012-spaeng.spa.eng 35.0 0.604
newstest2013-fraeng.fra.eng 31.7 0.573
newstest2013-spaeng.spa.eng 32.4 0.589
newstest2014-fren-fraeng.fra.eng 34.0 0.606
newstest2016-enro-roneng.ron.eng 34.8 0.608
Tatoeba-test.arg-eng.arg.eng 41.5 0.528
Tatoeba-test.ast-eng.ast.eng 36.0 0.519
Tatoeba-test.cat-eng.cat.eng 53.7 0.696
Tatoeba-test.cos-eng.cos.eng 56.5 0.640
Tatoeba-test.egl-eng.egl.eng 4.6 0.217
Tatoeba-test.ext-eng.ext.eng 39.1 0.547
Tatoeba-test.fra-eng.fra.eng 53.4 0.688
Tatoeba-test.frm-eng.frm.eng 22.3 0.409
Tatoeba-test.gcf-eng.gcf.eng 18.7 0.308
Tatoeba-test.glg-eng.glg.eng 54.8 0.701
Tatoeba-test.hat-eng.hat.eng 42.6 0.583
Tatoeba-test.ita-eng.ita.eng 64.8 0.767
Tatoeba-test.lad-eng.lad.eng 14.4 0.433
Tatoeba-test.lat-eng.lat.eng 19.5 0.390
Tatoeba-test.lij-eng.lij.eng 8.9 0.280
Tatoeba-test.lld-eng.lld.eng 17.4 0.331
Tatoeba-test.lmo-eng.lmo.eng 10.8 0.306
Tatoeba-test.mfe-eng.mfe.eng 66.0 0.820
Tatoeba-test.msa-eng.msa.eng 40.8 0.590
Tatoeba-test.multi.eng 47.6 0.634
Tatoeba-test.mwl-eng.mwl.eng 41.3 0.707
Tatoeba-test.oci-eng.oci.eng 20.3 0.401
Tatoeba-test.pap-eng.pap.eng 53.9 0.642
Tatoeba-test.pms-eng.pms.eng 12.2 0.334
Tatoeba-test.por-eng.por.eng 59.3 0.734
Tatoeba-test.roh-eng.roh.eng 17.7 0.420
Tatoeba-test.ron-eng.ron.eng 54.5 0.697
Tatoeba-test.scn-eng.scn.eng 40.0 0.443
Tatoeba-test.spa-eng.spa.eng 55.9 0.712
Tatoeba-test.vec-eng.vec.eng 11.2 0.304
Tatoeba-test.wln-eng.wln.eng 20.9 0.360

System Info:

  • hf_name: itc-eng

  • source_languages: itc

  • target_languages: eng

  • opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/itc-eng/README.md

  • original_repo: Tatoeba-Challenge

  • tags: ['translation']

  • languages: ['it', 'ca', 'rm', 'es', 'ro', 'gl', 'sc', 'co', 'wa', 'pt', 'oc', 'an', 'id', 'fr', 'ht', 'itc', 'en']

  • src_constituents: {'ita', 'cat', 'roh', 'spa', 'pap', 'bjn', 'lmo', 'mwl', 'lij', 'lat_Latn', 'lad_Latn', 'pcd', 'lat_Grek', 'ext', 'ron', 'ast', 'glg', 'pms', 'zsm_Latn', 'srd', 'gcf_Latn', 'lld_Latn', 'min', 'tmw_Latn', 'cos', 'wln', 'zlm_Latn', 'por', 'egl', 'oci', 'vec', 'arg', 'ind', 'fra', 'hat', 'lad', 'max_Latn', 'frm_Latn', 'scn', 'mfe'}

  • tgt_constituents: {'eng'}

  • src_multilingual: True

  • tgt_multilingual: False

  • prepro: normalization + SentencePiece (spm32k,spm32k)

  • url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eng/opus2m-2020-08-01.zip

  • url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eng/opus2m-2020-08-01.test.txt

  • src_alpha3: itc

  • tgt_alpha3: eng

  • short_pair: itc-en

  • chrF2_score: 0.634

  • bleu: 47.6

  • brevity_penalty: 0.981

  • ref_len: 77633.0

  • src_name: Italic languages

  • tgt_name: English

  • train_date: 2020-08-01

  • src_alpha2: itc

  • tgt_alpha2: en

  • prefer_old: False

  • long_pair: itc-eng

  • helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535

  • transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b

  • port_machine: brutasse

  • port_time: 2020-08-21-14:41