Back to all models
translation mask_token:
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚡️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

Helsinki-NLP/opus-mt-en-tut Helsinki-NLP/opus-mt-en-tut
N/a downloads
last 30 days

pytorch

tf

Contributed by

Language Technology Research Group at the University of Helsinki university
1 team member · 1325 models

How to use this model directly from the 🤗/transformers library:

			
Copy to clipboard
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-tut") model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-tut")
Uploaded in S3

eng-tut

  • source group: English

  • target group: Altaic languages

  • OPUS readme: eng-tut

  • model: transformer

  • source language(s): eng

  • target language(s): aze_Latn bak chv crh crh_Latn kaz_Cyrl kaz_Latn kir_Cyrl kjh kum mon nog ota_Arab ota_Latn sah tat tat_Arab tat_Latn tuk tuk_Latn tur tyv uig_Arab uig_Cyrl uzb_Cyrl uzb_Latn xal

  • model: transformer

  • pre-processing: normalization + SentencePiece (spm32k,spm32k)

  • a sentence initial language token is required in the form of >>id<< (id = valid target language ID)

  • download original weights: opus2m-2020-08-02.zip

  • test set translations: opus2m-2020-08-02.test.txt

  • test set scores: opus2m-2020-08-02.eval.txt

Benchmarks

testset BLEU chr-F
newsdev2016-entr-engtur.eng.tur 10.4 0.438
newstest2016-entr-engtur.eng.tur 9.1 0.414
newstest2017-entr-engtur.eng.tur 9.5 0.414
newstest2018-entr-engtur.eng.tur 9.5 0.415
Tatoeba-test.eng-aze.eng.aze 27.2 0.580
Tatoeba-test.eng-bak.eng.bak 5.8 0.298
Tatoeba-test.eng-chv.eng.chv 4.6 0.301
Tatoeba-test.eng-crh.eng.crh 6.5 0.342
Tatoeba-test.eng-kaz.eng.kaz 11.8 0.360
Tatoeba-test.eng-kir.eng.kir 24.6 0.499
Tatoeba-test.eng-kjh.eng.kjh 2.2 0.052
Tatoeba-test.eng-kum.eng.kum 8.0 0.229
Tatoeba-test.eng-mon.eng.mon 10.3 0.362
Tatoeba-test.eng.multi 19.5 0.451
Tatoeba-test.eng-nog.eng.nog 1.5 0.117
Tatoeba-test.eng-ota.eng.ota 0.2 0.035
Tatoeba-test.eng-sah.eng.sah 0.7 0.080
Tatoeba-test.eng-tat.eng.tat 10.8 0.320
Tatoeba-test.eng-tuk.eng.tuk 5.6 0.323
Tatoeba-test.eng-tur.eng.tur 34.2 0.623
Tatoeba-test.eng-tyv.eng.tyv 8.1 0.192
Tatoeba-test.eng-uig.eng.uig 0.1 0.158
Tatoeba-test.eng-uzb.eng.uzb 4.2 0.298
Tatoeba-test.eng-xal.eng.xal 0.1 0.061

System Info: