Edit model card

MobileNet-V2-Retinopathy

This model is a fine-tuned version of google/mobilenet_v2_1.4_224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2044
  • Accuracy: 0.9307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4403 1.0 113 0.5330 0.7079
0.5538 2.0 227 0.4312 0.7723
0.542 3.0 340 0.5137 0.7426
0.4776 4.0 454 0.4656 0.7723
0.4244 5.0 567 1.0400 0.5990
0.4694 6.0 681 0.5936 0.7228
0.4494 7.0 794 0.4667 0.7822
0.4647 8.0 908 0.2629 0.8960
0.3646 9.0 1021 0.2287 0.8861
0.4827 10.0 1135 1.7967 0.5149
0.3679 11.0 1248 0.4184 0.8267
0.3454 12.0 1362 0.1885 0.9406
0.3562 13.0 1475 0.2798 0.9059
0.3397 14.0 1589 1.6444 0.5891
0.4047 14.93 1695 0.2044 0.9307

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for EscvNcl/MobileNet-V2-Retinopathy

Finetuned
(2)
this model

Evaluation results