Edit model card

detr-resnet-50_finetuned_cppe5

This model is a fine-tuned version of facebook/detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.0989 1.0 125 3.4853
2.6414 2.0 250 3.4603
2.4811 3.0 375 3.1249
2.2018 4.0 500 2.9870
2.1618 5.0 625 3.2940
2.0608 6.0 750 3.1065
1.9556 7.0 875 3.0672
1.9142 8.0 1000 3.1347
1.8984 9.0 1125 3.0545
1.7799 10.0 1250 3.1041
1.7396 11.0 1375 2.9855
1.6741 12.0 1500 2.9899
1.6367 13.0 1625 3.0423
1.5807 14.0 1750 2.9943
1.6542 15.0 1875 3.0440
1.6268 16.0 2000 3.0157
1.5376 17.0 2125 3.0821
1.5396 18.0 2250 3.0359
1.5513 19.0 2375 3.0542
1.5038 20.0 2500 3.0153
1.4642 21.0 2625 3.0700
1.4331 22.0 2750 2.9970
1.4549 23.0 2875 3.0449
1.3796 24.0 3000 2.9348
1.3486 25.0 3125 3.0530
1.3557 26.0 3250 2.9036
1.3322 27.0 3375 2.8978
1.2866 28.0 3500 2.9449
1.2197 29.0 3625 2.9240
1.2596 30.0 3750 2.9422
1.2618 31.0 3875 2.8963
1.2298 32.0 4000 2.9116
1.2755 33.0 4125 2.8461
1.2062 34.0 4250 2.8651
1.2536 35.0 4375 2.8515
1.2543 36.0 4500 2.8212
1.2047 37.0 4625 2.8645
1.1618 38.0 4750 2.8755
1.1341 39.0 4875 2.9445
1.1881 40.0 5000 2.8731
1.2004 41.0 5125 2.8917
1.105 42.0 5250 2.9692
1.1408 43.0 5375 2.8619
1.0987 44.0 5500 2.8797
1.0857 45.0 5625 2.9032
1.0983 46.0 5750 2.7954
1.1254 47.0 5875 2.8693
0.9895 48.0 6000 2.9085
1.0401 49.0 6125 2.9256
1.0427 50.0 6250 2.9414
1.0813 51.0 6375 2.9730
1.043 52.0 6500 2.9698
1.0406 53.0 6625 2.9039
1.0178 54.0 6750 2.8910
1.0342 55.0 6875 2.8973
0.9433 56.0 7000 2.9515
1.0011 57.0 7125 2.8979
0.9683 58.0 7250 2.9770
0.9852 59.0 7375 2.9760
0.8886 60.0 7500 2.9978
0.9192 61.0 7625 2.9287
1.0015 62.0 7750 3.0118
0.9786 63.0 7875 2.9599
0.9238 64.0 8000 2.9459
0.9055 65.0 8125 2.9782
0.8864 66.0 8250 2.9396
0.8986 67.0 8375 3.0249
0.9571 68.0 8500 3.0207
0.8921 69.0 8625 2.9716
0.847 70.0 8750 3.0404
0.881 71.0 8875 2.9912
0.8919 72.0 9000 2.8573
0.8949 73.0 9125 2.8769
0.8704 74.0 9250 2.8301
0.8159 75.0 9375 2.9823
0.8586 76.0 9500 2.9548
0.8398 77.0 9625 2.9726
0.8368 78.0 9750 2.9853
0.8597 79.0 9875 3.0549
0.8176 80.0 10000 3.0531
0.838 81.0 10125 2.9602
0.8059 82.0 10250 2.9129
0.8176 83.0 10375 2.9702
0.8318 84.0 10500 2.9154
0.7104 85.0 10625 2.9706
0.7804 86.0 10750 2.9344
0.7696 87.0 10875 3.0594
0.7478 88.0 11000 2.9454
0.7374 89.0 11125 2.9786
0.7977 90.0 11250 2.9514
0.7864 91.0 11375 2.9400
0.7665 92.0 11500 2.8717
0.7539 93.0 11625 3.0417
0.6882 94.0 11750 2.9567
0.7424 95.0 11875 2.9805
0.7238 96.0 12000 3.0428
0.7383 97.0 12125 2.9852
0.6602 98.0 12250 3.0132
0.6971 99.0 12375 2.9537
0.7379 100.0 12500 2.9592
0.7207 101.0 12625 2.9905
0.7012 102.0 12750 3.0638
0.6768 103.0 12875 3.0401
0.6777 104.0 13000 3.0396
0.6913 105.0 13125 2.9501
0.6654 106.0 13250 3.1079
0.6393 107.0 13375 3.0405
0.6465 108.0 13500 3.1579
0.6379 109.0 13625 3.1174
0.6662 110.0 13750 3.0548
0.657 111.0 13875 3.0542
0.6193 112.0 14000 3.0411
0.5961 113.0 14125 3.0915
0.6438 114.0 14250 3.0924
0.5815 115.0 14375 3.0309
0.6113 116.0 14500 3.0300
0.635 117.0 14625 2.9968
0.5875 118.0 14750 2.9821
0.6447 119.0 14875 3.0285
0.5632 120.0 15000 3.0684
0.6206 121.0 15125 3.0065
0.5929 122.0 15250 3.0490
0.5509 123.0 15375 3.0520
0.6068 124.0 15500 3.0957
0.5747 125.0 15625 2.9621
0.5844 126.0 15750 3.0194
0.5684 127.0 15875 3.1037
0.6356 128.0 16000 3.0752
0.5644 129.0 16125 3.0063
0.6303 130.0 16250 3.0204
0.5432 131.0 16375 3.0809
0.6153 132.0 16500 3.1015
0.5662 133.0 16625 3.0639
0.5704 134.0 16750 3.1974
0.603 135.0 16875 3.1371
0.526 136.0 17000 3.1381
0.5767 137.0 17125 3.1614
0.5591 138.0 17250 3.2744
0.5609 139.0 17375 3.0405
0.5229 140.0 17500 3.0773
0.5367 141.0 17625 3.1367
0.5719 142.0 17750 3.1770
0.5172 143.0 17875 3.0953
0.5592 144.0 18000 3.2524
0.5422 145.0 18125 3.1534
0.5007 146.0 18250 3.1571
0.5348 147.0 18375 3.0949
0.5123 148.0 18500 3.1381
0.4839 149.0 18625 3.1624
0.5207 150.0 18750 3.0585
0.5236 151.0 18875 3.0886
0.5144 152.0 19000 3.1348
0.4882 153.0 19125 3.1027
0.4618 154.0 19250 3.1335
0.4573 155.0 19375 3.1687
0.4956 156.0 19500 3.2155
0.5073 157.0 19625 3.2512
0.5334 158.0 19750 3.2262
0.5014 159.0 19875 3.2350
0.4519 160.0 20000 3.2416
0.5042 161.0 20125 3.1955
0.4624 162.0 20250 3.2036
0.4577 163.0 20375 3.2498
0.5032 164.0 20500 3.1687
0.4894 165.0 20625 3.1920
0.4621 166.0 20750 3.2275
0.4896 167.0 20875 3.1416
0.4998 168.0 21000 3.1483
0.4941 169.0 21125 3.1408
0.4307 170.0 21250 3.2056
0.4284 171.0 21375 3.2112
0.4431 172.0 21500 3.1926
0.4429 173.0 21625 3.0972
0.4832 174.0 21750 3.2309
0.4417 175.0 21875 3.2027
0.4022 176.0 22000 3.2380
0.4777 177.0 22125 3.3315
0.462 178.0 22250 3.1854
0.4209 179.0 22375 3.1563
0.4271 180.0 22500 3.3036
0.4359 181.0 22625 3.3058
0.4324 182.0 22750 3.3639
0.4252 183.0 22875 3.2810
0.4382 184.0 23000 3.4633
0.4344 185.0 23125 3.2875
0.4639 186.0 23250 3.2771
0.4104 187.0 23375 3.2768
0.437 188.0 23500 3.3128
0.4469 189.0 23625 3.2389
0.4084 190.0 23750 3.4082
0.4333 191.0 23875 3.3177
0.4337 192.0 24000 3.3474
0.4173 193.0 24125 3.3495
0.386 194.0 24250 3.3413
0.4279 195.0 24375 3.3327
0.4046 196.0 24500 3.3383
0.4163 197.0 24625 3.3235
0.4032 198.0 24750 3.3549
0.381 199.0 24875 3.2899
0.3858 200.0 25000 3.3752
0.4085 201.0 25125 3.2569
0.3643 202.0 25250 3.3265
0.3621 203.0 25375 3.3730
0.4749 204.0 25500 3.3738
0.3969 205.0 25625 3.3619
0.3677 206.0 25750 3.4378
0.3838 207.0 25875 3.3412
0.4063 208.0 26000 3.3268
0.3719 209.0 26125 3.4574
0.3803 210.0 26250 3.3598
0.4093 211.0 26375 3.3738
0.38 212.0 26500 3.2644
0.3757 213.0 26625 3.3872
0.4116 214.0 26750 3.4318
0.3741 215.0 26875 3.2945
0.3809 216.0 27000 3.4419
0.3625 217.0 27125 3.4126
0.3772 218.0 27250 3.3693
0.3494 219.0 27375 3.3014
0.3521 220.0 27500 3.4202
0.3498 221.0 27625 3.2887
0.3716 222.0 27750 3.5634
0.346 223.0 27875 3.3463
0.388 224.0 28000 3.4088
0.3708 225.0 28125 3.3841
0.3964 226.0 28250 3.3839
0.3897 227.0 28375 3.4874
0.3272 228.0 28500 3.5225
0.3582 229.0 28625 3.4964
0.3656 230.0 28750 3.3781
0.3497 231.0 28875 3.4067
0.3318 232.0 29000 3.4918
0.3565 233.0 29125 3.5039
0.3865 234.0 29250 3.5416
0.3583 235.0 29375 3.4231
0.3464 236.0 29500 3.4524
0.3465 237.0 29625 3.4779
0.3428 238.0 29750 3.4889
0.3847 239.0 29875 3.5142
0.3505 240.0 30000 3.5132
0.344 241.0 30125 3.5439
0.3741 242.0 30250 3.4861
0.3045 243.0 30375 3.4534
0.3443 244.0 30500 3.4675
0.3719 245.0 30625 3.4354
0.3534 246.0 30750 3.4817
0.3644 247.0 30875 3.5027
0.3157 248.0 31000 3.5055
0.3393 249.0 31125 3.3962
0.3054 250.0 31250 3.4470
0.3434 251.0 31375 3.5036
0.3141 252.0 31500 3.5428
0.3227 253.0 31625 3.5025
0.3199 254.0 31750 3.5110
0.3667 255.0 31875 3.5168
0.3442 256.0 32000 3.5739
0.366 257.0 32125 3.5094
0.3053 258.0 32250 3.4360
0.3595 259.0 32375 3.5895
0.3329 260.0 32500 3.5869
0.3139 261.0 32625 3.5317
0.299 262.0 32750 3.6398
0.3131 263.0 32875 3.5696
0.3218 264.0 33000 3.5519
0.3677 265.0 33125 3.6712
0.3447 266.0 33250 3.5278
0.3094 267.0 33375 3.5613
0.3031 268.0 33500 3.4634
0.3234 269.0 33625 3.5966
0.3489 270.0 33750 3.5239
0.3168 271.0 33875 3.6847
0.3151 272.0 34000 3.5559
0.2843 273.0 34125 3.5995
0.3003 274.0 34250 3.6388
0.3154 275.0 34375 3.6759
0.3178 276.0 34500 3.5199
0.3436 277.0 34625 3.5651
0.3136 278.0 34750 3.5722
0.3252 279.0 34875 3.4851
0.3404 280.0 35000 3.6847
0.304 281.0 35125 3.5653
0.3395 282.0 35250 3.6775
0.3431 283.0 35375 3.5556
0.2861 284.0 35500 3.6451
0.3066 285.0 35625 3.6052
0.3151 286.0 35750 3.6406
0.3143 287.0 35875 3.6744
0.2873 288.0 36000 3.6218
0.3296 289.0 36125 3.4993
0.3024 290.0 36250 3.5596
0.3138 291.0 36375 3.5875
0.2964 292.0 36500 3.5953
0.2935 293.0 36625 3.5550
0.2856 294.0 36750 3.5805
0.2998 295.0 36875 3.6153
0.2809 296.0 37000 3.6440
0.3197 297.0 37125 3.6127
0.2863 298.0 37250 3.6362
0.3355 299.0 37375 3.7291
0.2942 300.0 37500 3.6750
0.3187 301.0 37625 3.6617
0.3191 302.0 37750 3.6898
0.2716 303.0 37875 3.6238
0.2911 304.0 38000 3.6409
0.3231 305.0 38125 3.6807
0.2723 306.0 38250 3.7038
0.2812 307.0 38375 3.6565
0.3225 308.0 38500 3.6680
0.2803 309.0 38625 3.7389
0.2852 310.0 38750 3.7257
0.2958 311.0 38875 3.7873
0.3191 312.0 39000 3.8238
0.2815 313.0 39125 3.7388
0.2681 314.0 39250 3.7543
0.3259 315.0 39375 3.8022
0.2804 316.0 39500 3.7106
0.3214 317.0 39625 3.6244
0.2732 318.0 39750 3.7712
0.3054 319.0 39875 3.6776
0.263 320.0 40000 3.6850
0.2644 321.0 40125 3.7169
0.2796 322.0 40250 3.7958
0.2928 323.0 40375 3.7770
0.2774 324.0 40500 3.7142
0.3048 325.0 40625 3.7942
0.2637 326.0 40750 3.7499
0.2549 327.0 40875 3.7323
0.2681 328.0 41000 3.8373
0.2735 329.0 41125 3.7600
0.291 330.0 41250 3.6715
0.278 331.0 41375 3.6660
0.2785 332.0 41500 3.7076
0.2632 333.0 41625 3.7408
0.2994 334.0 41750 3.7214
0.2563 335.0 41875 3.7326
0.2755 336.0 42000 3.7088
0.287 337.0 42125 3.7493
0.3144 338.0 42250 3.7180
0.2816 339.0 42375 3.7289
0.2515 340.0 42500 3.6592
0.2647 341.0 42625 3.6483
0.2833 342.0 42750 3.7359
0.2678 343.0 42875 3.7351
0.2929 344.0 43000 3.7129
0.2604 345.0 43125 3.7604
0.2406 346.0 43250 3.6867
0.2802 347.0 43375 3.6935
0.2702 348.0 43500 3.6744
0.2836 349.0 43625 3.7118
0.2454 350.0 43750 3.7354
0.238 351.0 43875 3.7200
0.2663 352.0 44000 3.7351
0.272 353.0 44125 3.7509
0.2422 354.0 44250 3.7413
0.3032 355.0 44375 3.6266
0.2617 356.0 44500 3.7229
0.2618 357.0 44625 3.7356
0.2619 358.0 44750 3.7178
0.2588 359.0 44875 3.7896
0.2508 360.0 45000 3.7686
0.2791 361.0 45125 3.7918
0.27 362.0 45250 3.7870
0.2841 363.0 45375 3.7675
0.2776 364.0 45500 3.7090
0.2752 365.0 45625 3.6754
0.2727 366.0 45750 3.6542
0.2423 367.0 45875 3.6399
0.263 368.0 46000 3.6337
0.2562 369.0 46125 3.7343
0.2704 370.0 46250 3.6502
0.2604 371.0 46375 3.7519
0.2312 372.0 46500 3.7563
0.2761 373.0 46625 3.6497
0.265 374.0 46750 3.7312
0.2545 375.0 46875 3.7273
0.2551 376.0 47000 3.8266
0.2604 377.0 47125 3.7659
0.252 378.0 47250 3.8003
0.2468 379.0 47375 3.7535
0.289 380.0 47500 3.7376
0.2449 381.0 47625 3.7216
0.2471 382.0 47750 3.7704
0.2627 383.0 47875 3.7510
0.2454 384.0 48000 3.8007
0.2391 385.0 48125 3.7535
0.2452 386.0 48250 3.7905
0.2608 387.0 48375 3.8170
0.2662 388.0 48500 3.7836
0.235 389.0 48625 3.7754
0.2425 390.0 48750 3.7201
0.2463 391.0 48875 3.8298
0.2507 392.0 49000 3.8252
0.2451 393.0 49125 3.7625
0.2418 394.0 49250 3.7482
0.2397 395.0 49375 3.7875
0.2773 396.0 49500 3.8159
0.256 397.0 49625 3.8322
0.2304 398.0 49750 3.8012
0.2363 399.0 49875 3.8033
0.2575 400.0 50000 3.7727

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
34
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for EroshkinIvan/detr-resnet-50_finetuned_cppe5

Finetuned
(437)
this model