vit-weldclassifyv4

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3301
  • Accuracy: 0.9209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8207 0.6410 100 1.0336 0.5647
0.6506 1.2821 200 1.1982 0.5791
0.5324 1.9231 300 0.6060 0.7770
0.2486 2.5641 400 0.7294 0.7518
0.1366 3.2051 500 0.4832 0.8417
0.3124 3.8462 600 0.8676 0.7626
0.0296 4.4872 700 0.4233 0.8885
0.0723 5.1282 800 0.4470 0.8849
0.0342 5.7692 900 0.3406 0.9173
0.0055 6.4103 1000 0.3301 0.9209
0.0048 7.0513 1100 0.3471 0.9173
0.0036 7.6923 1200 0.3346 0.9137
0.003 8.3333 1300 0.3498 0.9137
0.003 8.9744 1400 0.3549 0.9101
0.0027 9.6154 1500 0.3569 0.9137

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
49
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Encore02/vit-weldclassifyv4

Finetuned
(1792)
this model

Evaluation results