Update 2023-12-19
In light of dataset contamination issue among the merged models raised by the community in recent days, in particular berkeley-nest/Starling-LM-7B-alpha, and Q-bert/MetaMath-Cybertron-Starling, we decided to remake another model without the models mentioned. Additionally, their CC-by-NC-4.0 license is restrictive and thus are not suitable for an open model.
Model Description
This is an experiment to test merging 14 models using DARE TIES ๐ฆ
The result is a base model that performs quite well but requires some further instruction fine-tuning.
The 14 models are as follows:
- mistralai/Mistral-7B-Instruct-v0.2
- ehartford/dolphin-2.2.1-mistral-7b
- SciPhi/SciPhi-Mistral-7B-32k
- ehartford/samantha-1.2-mistral-7b
- Arc53/docsgpt-7b-mistral
- berkeley-nest/Starling-LM-7B-alpha
- Q-bert/MetaMath-Cybertron-Starling
- Open-Orca/Mistral-7B-OpenOrca
- v1olet/v1olet_marcoroni-go-bruins-merge-7B
- beowolx/MistralHermes-CodePro-7B-v1
- TIGER-Lab/MAmmoTH-7B-Mistral
- teknium/OpenHermes-2.5-Mistral-7B
- Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
- mlabonne/NeuralHermes-2.5-Mistral-7B
- base model: mistralai/Mistral-7B-v0.1
The yaml config file for this model is here:
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: ehartford/dolphin-2.2.1-mistral-7b
parameters:
weight: 0.08
density: 0.4
- model: SciPhi/SciPhi-Mistral-7B-32k
parameters:
weight: 0.08
density: 0.4
- model: ehartford/samantha-1.2-mistral-7b
parameters:
weight: 0.08
density: 0.4
- model: Arc53/docsgpt-7b-mistral
parameters:
weight: 0.08
density: 0.4
- model: berkeley-nest/Starling-LM-7B-alpha
parameters:
weight: 0.08
density: 0.4
- model: Q-bert/MetaMath-Cybertron-Starling
parameters:
weight: 0.08
density: 0.4
- model: Open-Orca/Mistral-7B-OpenOrca
parameters:
weight: 0.08
density: 0.4
- model: v1olet/v1olet_marcoroni-go-bruins-merge-7B
parameters:
weight: 0.08
density: 0.4
- model: beowolx/MistralHermes-CodePro-7B-v1
parameters:
weight: 0.08
density: 0.4
- model: TIGER-Lab/MAmmoTH-7B-Mistral
parameters:
weight: 0.08
density: 0.4
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
weight: 0.08
density: 0.4
- model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
parameters:
weight: 0.08
density: 0.4
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
weight: 0.08
density: 0.4
- model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
weight: 0.08
density: 0.5
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for EmbeddedLLM/Mistral-7B-Merge-14-v0
Merge model
this model