Edit model card

swin-tiny-patch4-window7-224-finetuned-eurosat

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0603
  • Accuracy: 0.9816

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0105 0.99 78 0.9788 0.5251
0.8749 2.0 157 0.8167 0.6323
0.7352 2.99 235 0.6498 0.7179
0.647 4.0 314 0.5619 0.7630
0.5949 4.99 392 0.5068 0.7892
0.5773 6.0 471 0.4673 0.8058
0.5401 6.99 549 0.4277 0.8211
0.5116 8.0 628 0.4089 0.8314
0.4751 8.99 706 0.3891 0.8399
0.4659 10.0 785 0.3599 0.8574
0.4457 10.99 863 0.3493 0.8592
0.4021 12.0 942 0.3180 0.8751
0.3925 12.99 1020 0.2824 0.8863
0.3737 14.0 1099 0.2686 0.8960
0.3573 14.99 1177 0.2509 0.8978
0.3463 16.0 1256 0.2214 0.9101
0.3174 16.99 1334 0.2233 0.9143
0.3029 18.0 1413 0.2065 0.9222
0.27 18.99 1491 0.1900 0.9287
0.2796 20.0 1570 0.1843 0.9294
0.2649 20.99 1648 0.1811 0.9291
0.2561 22.0 1727 0.1679 0.9345
0.2384 22.99 1805 0.1579 0.9401
0.2415 24.0 1884 0.1414 0.9462
0.2282 24.99 1962 0.1478 0.9439
0.2345 26.0 2041 0.1523 0.9419
0.2196 26.99 2119 0.1240 0.9529
0.2118 28.0 2198 0.1228 0.9502
0.1977 28.99 2276 0.1192 0.9565
0.1994 30.0 2355 0.1208 0.9529
0.1959 30.99 2433 0.1189 0.9563
0.1946 32.0 2512 0.1106 0.9617
0.1777 32.99 2590 0.1048 0.9587
0.1895 34.0 2669 0.0965 0.9643
0.1779 34.99 2747 0.1081 0.9623
0.1717 36.0 2826 0.1155 0.9590
0.1715 36.99 2904 0.1006 0.9630
0.1748 38.0 2983 0.0894 0.9695
0.1677 38.99 3061 0.1037 0.9639
0.1723 40.0 3140 0.1009 0.9637
0.1552 40.99 3218 0.0867 0.9697
0.1658 42.0 3297 0.0860 0.9702
0.1531 42.99 3375 0.0921 0.9673
0.1593 44.0 3454 0.0941 0.9646
0.1568 44.99 3532 0.0879 0.9686
0.1621 46.0 3611 0.0929 0.9693
0.1602 46.99 3689 0.0777 0.9744
0.1397 48.0 3768 0.0821 0.9733
0.1475 48.99 3846 0.0810 0.9711
0.1452 50.0 3925 0.0943 0.9697
0.148 50.99 4003 0.0943 0.9704
0.1392 52.0 4082 0.0869 0.9695
0.1389 52.99 4160 0.0876 0.9738
0.1295 54.0 4239 0.0716 0.9749
0.1394 54.99 4317 0.0760 0.9751
0.1354 56.0 4396 0.0771 0.9726
0.1303 56.99 4474 0.0738 0.9738
0.1274 58.0 4553 0.0834 0.9724
0.1276 58.99 4631 0.0801 0.9747
0.1372 60.0 4710 0.0667 0.9762
0.1417 60.99 4788 0.0747 0.9738
0.1249 62.0 4867 0.0735 0.9744
0.1212 62.99 4945 0.0665 0.9780
0.1218 64.0 5024 0.0680 0.9771
0.1193 64.99 5102 0.0679 0.9760
0.1148 66.0 5181 0.0685 0.9774
0.1242 66.99 5259 0.0647 0.9800
0.1167 68.0 5338 0.0646 0.9783
0.117 68.99 5416 0.0763 0.9765
0.1153 70.0 5495 0.0720 0.9753
0.12 70.99 5573 0.0717 0.9771
0.1054 72.0 5652 0.0677 0.9767
0.1183 72.99 5730 0.0741 0.9756
0.1082 74.0 5809 0.0676 0.9787
0.1088 74.99 5887 0.0700 0.9751
0.1125 76.0 5966 0.0663 0.9785
0.1099 76.99 6044 0.0622 0.9789
0.1128 78.0 6123 0.0660 0.9794
0.1178 78.99 6201 0.0699 0.9780
0.1129 80.0 6280 0.0605 0.9794
0.1013 80.99 6358 0.0694 0.9778
0.1078 82.0 6437 0.0652 0.9783
0.0994 82.99 6515 0.0604 0.9812
0.1093 84.0 6594 0.0600 0.9805
0.1039 84.99 6672 0.0646 0.9787
0.0963 86.0 6751 0.0654 0.9789
0.1053 86.99 6829 0.0627 0.9803
0.0982 88.0 6908 0.0619 0.9800
0.0944 88.99 6986 0.0607 0.9796
0.0959 90.0 7065 0.0661 0.9800
0.101 90.99 7143 0.0642 0.9809
0.1095 92.0 7222 0.0607 0.9807
0.1079 92.99 7300 0.0610 0.9803
0.1153 94.0 7379 0.0632 0.9798
0.1022 94.99 7457 0.0618 0.9812
0.1079 96.0 7536 0.0606 0.9809
0.0942 96.99 7614 0.0612 0.9800
0.0927 98.0 7693 0.0598 0.9809
0.1032 98.99 7771 0.0604 0.9814
0.0925 99.36 7800 0.0603 0.9816

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
28
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results