See axolotl config
axolotl version: 0.5.2
base_model: ./pleias_erebus
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
#datasets:
# - path: Mielikki/Erebus-87k
# type: completion
# field: body
# - path: allura-org/r_shortstories_24k
# type: completion
# field: text
datasets:
- path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
- path: anthracite-org/kalo_misc_part2
- path: anthracite-org/kalo_opus_misc_240827
- path: Nitral-AI/Olympiad_Math-ShareGPT
- path: Nitral-AI/Cybersecurity-ShareGPT
- path: Nitral-AI/Medical_Instruct-ShareGPT
- path: NewEden/Claude-Instruct-2.7K
- path: NewEden/Claude-Instruct-5K
dataset_config:
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
roles_to_train: ["gpt"]
train_on_eos: "turn"
#chat_template: jinja
#chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
chat_template: chatml
output_dir: ./pleias_outputs
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: Pleias-Baldur
wandb_entity:
wandb_watch:
wandb_name: run-2
wandb_log_model:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_layer_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
#gradient_checkpointing: unsloth
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
#auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 25
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
weight_decay: 0.02
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
#deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
fsdp:
fsdp_config:
special_tokens:
bos_token: '<|begin_of_text|>'
eos_token: '<|end_of_text|>'
pad_token: '[PAD]'
pleias_outputs
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 3
Training results
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 106
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.