Edit model card

absa_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6475
  • Accuracy: 0.8392
  • F1: 0.8409
  • Precision: 0.8444
  • Recall: 0.8431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 72 0.6475 0.8392 0.8409 0.8444 0.8431
No log 2.0 144 0.8639 0.8252 0.8156 0.8261 0.8177
No log 3.0 216 0.9170 0.7832 0.7800 0.8112 0.7676
No log 4.0 288 0.8206 0.8322 0.8359 0.8346 0.8405
No log 5.0 360 0.8318 0.8392 0.8417 0.8434 0.8404
No log 6.0 432 0.9578 0.8252 0.8255 0.8243 0.8325
0.0684 7.0 504 0.9713 0.8112 0.8027 0.8143 0.7967
0.0684 8.0 576 0.9850 0.8252 0.8137 0.8236 0.8089
0.0684 9.0 648 0.9955 0.8392 0.8258 0.8347 0.8203
0.0684 10.0 720 0.9964 0.8392 0.8258 0.8347 0.8203

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dhanang/absa_model

Finetuned
(35)
this model