Edit model card
YAML Metadata Error: "datasets" must be one of [string, array]

bert-base-multilingual-cased-finetuned-yoruba

Model description

bert-base-multilingual-cased-finetuned-yoruba is a Yoruba BERT model obtained by fine-tuning bert-base-multilingual-cased model on Yorùbá language texts. It provides better performance than the multilingual BERT on text classification and named entity recognition datasets.

Specifically, this model is a bert-base-multilingual-cased model that was fine-tuned on Yorùbá corpus.

Intended uses & limitations

How to use

You can use this model with Transformers pipeline for masked token prediction.

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-yoruba')
>>> unmasker("Arẹmọ Phillip to jẹ ọkọ [MASK] Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun")

[{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Mary Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.1738305538892746, 
'token': 12176, 
'token_str': 'Mary'}, 
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Queen Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.16382873058319092, 
'token': 13704, 
'token_str': 'Queen'}, 
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ ti Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.13272495567798615, 
'token': 14382, 
'token_str': 'ti'}, 
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ King Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.12823280692100525, 
'token': 11515, 
'token_str': 'King'}, 
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Lady Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.07841219753026962, 
'token': 14005, 
'token_str': 'Lady'}]

Limitations and bias

This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.

Training data

This model was fine-tuned on Bible, JW300, Menyo-20k, Yoruba Embedding corpus and CC-Aligned, Wikipedia, news corpora (BBC Yoruba, VON Yoruba, Asejere, Alaroye), and other small datasets curated from friends.

Training procedure

This model was trained on a single NVIDIA V100 GPU

Eval results on Test set (F-score, average over 5 runs)

Dataset mBERT F1 yo_bert F1
MasakhaNER 78.97 82.58
BBC Yorùbá Textclass 75.13 79.11

BibTeX entry and citation info

By David Adelani


Downloads last month
37
Hosted inference API
Mask token: [MASK]
This model can be loaded on the Inference API on-demand.