AI Image Detection

Dataset

  • AI: โ‰ˆ100,000 Images
  • Human: โ‰ˆ100,000 Images

Model

  • Architecture: EfficientNet-B4
  • Framework: PyTorch

Evaluation Metrics

  • Training Accuracy: 99.75%
  • Validation Accuracy: 98.59%
  • Training Loss: 0.0072
  • Validation Loss: 0.0553

Usage

pip install torch torchvision timm huggingface_hub pillow

Example Code

import torch
from torchvision import transforms
from PIL import Image
from timm import create_model
from huggingface_hub import hf_hub_download

# Parameters
IMG_SIZE = 380
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
LABEL_MAPPING = {1: "human", 0: "ai"}

# Download model from HuggingFace Hub
MODEL_PATH = hf_hub_download(repo_id="Dafilab/ai-image-detector", filename="model_epoch_8_acc_0.9859.pth")

# Preprocessing
transform = transforms.Compose([
    transforms.Resize(IMG_SIZE + 20),
    transforms.CenterCrop(IMG_SIZE),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# Load model
model = create_model('efficientnet_b4', pretrained=False, num_classes=2)
model.load_state_dict(torch.load(MODEL_PATH, map_location=DEVICE))
model.to(DEVICE).eval()

# Prediction function
def predict_image(image_path):
    img = Image.open(image_path).convert("RGB")
    img = transform(img).unsqueeze(0).to(DEVICE)
    with torch.no_grad():
        logits = model(img)
        probs = torch.nn.functional.softmax(logits, dim=1)
        predicted_class = torch.argmax(probs, dim=1).item()
        confidence = probs[0, predicted_class].item()
    return LABEL_MAPPING[predicted_class], confidence

# Example usage
image_path = "path/to/image.jpg"
label, confidence = predict_image(image_path)
print(f"Label: {label}, Confidence: {confidence:.2f}")
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dafilab/ai-image-detector

Finetuned
(1)
this model