Edit model card

microchar_moe

microchar_moe is a Mixture of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: Corianas/Microllama_Char_88k_step 
gate_mode: random # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
## (optional)
# experts_per_token: 2
experts:
  - source_model: Corianas/Microllama_Char_88k_step
    positive_prompts:
      - ""
    ## (optional)
    # negative_prompts:
    #   - "This is a prompt expert_model_1 should not be used for"
  - source_model: Corianas/Microllama_Char_88k_step
    positive_prompts:
      - "" 

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Corianas/microchar_moe"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
8
Safetensors
Model size
142M params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Corianas/microchar_moe

Finetuned
(1)
this model