See axolotl config
axolotl version: 0.4.0
adapter: null
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
batch_size: 2
bf16: auto
dataset_prepared_path: null
datasets:
- ds_type: json
path: /workspace/data.jsonl
type: context_qa.load_v2
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: 4
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gptq_groupsize: null
gptq_model_v1: null
gradient_checkpointing: true
group_by_length: false
learning_rate: 1.0e-05
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.2
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_packed_sequence_len: null
micro_batch_size: 1
model_config:
output_router_logits: true
model_type: MistralForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: /workspace/out-mistral-2B
resume_from_checkpoint: null
saves_per_epoch: 1
sequence_len: 2048
special_tokens:
bos_token: <s>
eos_token: <|im_end|>
pad_token: </s>
tf32: true
tokenizer_type: LlamaTokenizer
torchdistx_path: null
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_log_model: Nous-Hermes-2-Mistral-7B-DPO
wandb_name: mistral
wandb_project: Ultron-llama
wandb_watch: null
warmup_steps: 40
weight_decay: 0.0
xformers_attention: true
workspace/out-mistral-2B
This model is a fine-tuned version of NousResearch/Nous-Hermes-2-Mistral-7B-DPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5036
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6411 | 0.02 | 1 | 0.4803 |
0.5321 | 0.26 | 11 | 0.3867 |
0.4077 | 0.51 | 22 | 0.3591 |
0.4455 | 0.77 | 33 | 0.3995 |
0.2921 | 1.02 | 44 | 0.4368 |
0.3459 | 1.28 | 55 | 0.4884 |
0.2768 | 1.53 | 66 | 0.4978 |
0.4168 | 1.79 | 77 | 0.4808 |
0.14 | 2.05 | 88 | 0.4547 |
0.1132 | 2.3 | 99 | 0.4856 |
0.1055 | 2.56 | 110 | 0.4916 |
0.1385 | 2.81 | 121 | 0.4783 |
0.0455 | 3.07 | 132 | 0.4677 |
0.0211 | 3.33 | 143 | 0.4892 |
0.0236 | 3.58 | 154 | 0.5016 |
0.009 | 3.84 | 165 | 0.5036 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for CapiJack/UltronTactIQ-Mistral-2-7b
Base model
mistralai/Mistral-7B-v0.1