Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

adapter: null
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
batch_size: 2
bf16: auto
dataset_prepared_path: null
datasets:
- ds_type: json
  path: /workspace/data.jsonl
  type: context_qa.load_v2
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: 4
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gptq_groupsize: null
gptq_model_v1: null
gradient_checkpointing: true
group_by_length: false
learning_rate: 1.0e-05
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.2
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_packed_sequence_len: null
micro_batch_size: 1
model_config:
  output_router_logits: true
model_type: MistralForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: /workspace/out-mistral-2B
resume_from_checkpoint: null
saves_per_epoch: 1
sequence_len: 2048
special_tokens:
  bos_token: <s>
  eos_token: <|im_end|>
  pad_token: </s>
tf32: true
tokenizer_type: LlamaTokenizer
torchdistx_path: null
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_log_model: Nous-Hermes-2-Mistral-7B-DPO
wandb_name: mistral
wandb_project: Ultron-llama
wandb_watch: null
warmup_steps: 40
weight_decay: 0.0
xformers_attention: true

workspace/out-mistral-2B

This model is a fine-tuned version of NousResearch/Nous-Hermes-2-Mistral-7B-DPO on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.6411 0.02 1 0.4803
0.5321 0.26 11 0.3867
0.4077 0.51 22 0.3591
0.4455 0.77 33 0.3995
0.2921 1.02 44 0.4368
0.3459 1.28 55 0.4884
0.2768 1.53 66 0.4978
0.4168 1.79 77 0.4808
0.14 2.05 88 0.4547
0.1132 2.3 99 0.4856
0.1055 2.56 110 0.4916
0.1385 2.81 121 0.4783
0.0455 3.07 132 0.4677
0.0211 3.33 143 0.4892
0.0236 3.58 154 0.5016
0.009 3.84 165 0.5036

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CapiJack/UltronTactIQ-Mistral-2-7b

Finetuned
(10)
this model