deit-base-distilled-patch16-224-hasta-75-fold3

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5699
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.0629 0.1667
No log 2.0 2 0.8596 0.5833
No log 3.0 3 0.5699 0.9167
No log 4.0 4 0.3576 0.9167
No log 5.0 5 0.2875 0.9167
No log 6.0 6 0.2993 0.9167
No log 7.0 7 0.3152 0.9167
No log 8.0 8 0.3399 0.9167
No log 9.0 9 0.4232 0.9167
0.3622 10.0 10 0.5129 0.9167
0.3622 11.0 11 0.4640 0.9167
0.3622 12.0 12 0.3709 0.9167
0.3622 13.0 13 0.3229 0.9167
0.3622 14.0 14 0.3183 0.9167
0.3622 15.0 15 0.3590 0.9167
0.3622 16.0 16 0.4468 0.9167
0.3622 17.0 17 0.5249 0.75
0.3622 18.0 18 0.4227 0.9167
0.3622 19.0 19 0.3300 0.9167
0.1749 20.0 20 0.3031 0.9167
0.1749 21.0 21 0.2836 0.9167
0.1749 22.0 22 0.2596 0.9167
0.1749 23.0 23 0.2215 0.9167
0.1749 24.0 24 0.1797 0.9167
0.1749 25.0 25 0.1658 0.9167
0.1749 26.0 26 0.1600 0.9167
0.1749 27.0 27 0.1567 0.9167
0.1749 28.0 28 0.1680 0.9167
0.1749 29.0 29 0.2079 0.9167
0.1002 30.0 30 0.2458 0.9167
0.1002 31.0 31 0.2637 0.9167
0.1002 32.0 32 0.2795 0.9167
0.1002 33.0 33 0.3174 0.9167
0.1002 34.0 34 0.3426 0.9167
0.1002 35.0 35 0.3858 0.9167
0.1002 36.0 36 0.4281 0.9167
0.1002 37.0 37 0.4447 0.9167
0.1002 38.0 38 0.4355 0.9167
0.1002 39.0 39 0.4306 0.9167
0.0662 40.0 40 0.4398 0.9167
0.0662 41.0 41 0.4657 0.9167
0.0662 42.0 42 0.4941 0.9167
0.0662 43.0 43 0.5061 0.9167
0.0662 44.0 44 0.5010 0.9167
0.0662 45.0 45 0.4816 0.9167
0.0662 46.0 46 0.4398 0.9167
0.0662 47.0 47 0.3948 0.9167
0.0662 48.0 48 0.3486 0.9167
0.0662 49.0 49 0.3180 0.9167
0.0543 50.0 50 0.3029 0.9167
0.0543 51.0 51 0.3053 0.9167
0.0543 52.0 52 0.3160 0.9167
0.0543 53.0 53 0.3449 0.9167
0.0543 54.0 54 0.3712 0.9167
0.0543 55.0 55 0.3785 0.9167
0.0543 56.0 56 0.4049 0.9167
0.0543 57.0 57 0.4094 0.9167
0.0543 58.0 58 0.4179 0.9167
0.0543 59.0 59 0.4083 0.9167
0.0473 60.0 60 0.3855 0.9167
0.0473 61.0 61 0.3758 0.9167
0.0473 62.0 62 0.3675 0.9167
0.0473 63.0 63 0.3660 0.9167
0.0473 64.0 64 0.3843 0.9167
0.0473 65.0 65 0.4092 0.9167
0.0473 66.0 66 0.4374 0.9167
0.0473 67.0 67 0.4666 0.9167
0.0473 68.0 68 0.4798 0.9167
0.0473 69.0 69 0.4869 0.9167
0.018 70.0 70 0.4853 0.9167
0.018 71.0 71 0.4783 0.9167
0.018 72.0 72 0.4649 0.9167
0.018 73.0 73 0.4525 0.9167
0.018 74.0 74 0.4411 0.9167
0.018 75.0 75 0.4355 0.9167
0.018 76.0 76 0.4310 0.9167
0.018 77.0 77 0.4330 0.9167
0.018 78.0 78 0.4296 0.9167
0.018 79.0 79 0.4264 0.9167
0.0195 80.0 80 0.4204 0.9167
0.0195 81.0 81 0.4182 0.9167
0.0195 82.0 82 0.4193 0.9167
0.0195 83.0 83 0.4225 0.9167
0.0195 84.0 84 0.4208 0.9167
0.0195 85.0 85 0.4193 0.9167
0.0195 86.0 86 0.4185 0.9167
0.0195 87.0 87 0.4186 0.9167
0.0195 88.0 88 0.4163 0.9167
0.0195 89.0 89 0.4076 0.9167
0.0203 90.0 90 0.4032 0.9167
0.0203 91.0 91 0.4000 0.9167
0.0203 92.0 92 0.4003 0.9167
0.0203 93.0 93 0.4033 0.9167
0.0203 94.0 94 0.4079 0.9167
0.0203 95.0 95 0.4112 0.9167
0.0203 96.0 96 0.4138 0.9167
0.0203 97.0 97 0.4155 0.9167
0.0203 98.0 98 0.4167 0.9167
0.0203 99.0 99 0.4169 0.9167
0.0252 100.0 100 0.4170 0.9167

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/deit-base-distilled-patch16-224-hasta-75-fold3

Finetuned
(72)
this model

Evaluation results