deit-base-distilled-patch16-224-65-fold2

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3095
  • Accuracy: 0.9155

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.7211 0.4366
No log 1.8462 6 0.7016 0.5070
No log 2.7692 9 0.6703 0.6197
0.6946 4.0 13 0.6381 0.6620
0.6946 4.9231 16 0.5945 0.6761
0.6946 5.8462 19 0.6084 0.7183
0.6262 6.7692 22 0.5639 0.7465
0.6262 8.0 26 0.5203 0.7746
0.6262 8.9231 29 0.4805 0.7887
0.544 9.8462 32 0.5204 0.7324
0.544 10.7692 35 0.4635 0.7746
0.544 12.0 39 0.4957 0.7606
0.516 12.9231 42 0.4723 0.7746
0.516 13.8462 45 0.5170 0.7042
0.516 14.7692 48 0.5405 0.8169
0.4938 16.0 52 0.5082 0.7324
0.4938 16.9231 55 0.4608 0.7887
0.4938 17.8462 58 0.4211 0.7606
0.4123 18.7692 61 0.5015 0.7746
0.4123 20.0 65 0.3935 0.8592
0.4123 20.9231 68 0.4179 0.8169
0.3489 21.8462 71 0.3991 0.9014
0.3489 22.7692 74 0.3910 0.8592
0.3489 24.0 78 0.4277 0.8310
0.2889 24.9231 81 0.4032 0.8169
0.2889 25.8462 84 0.3703 0.8592
0.2889 26.7692 87 0.4404 0.8310
0.2659 28.0 91 0.3666 0.8592
0.2659 28.9231 94 0.3992 0.8169
0.2659 29.8462 97 0.4040 0.8169
0.2269 30.7692 100 0.3559 0.8592
0.2269 32.0 104 0.4766 0.8028
0.2269 32.9231 107 0.3852 0.8592
0.2031 33.8462 110 0.3702 0.8592
0.2031 34.7692 113 0.3203 0.8732
0.2031 36.0 117 0.5303 0.8169
0.2037 36.9231 120 0.3897 0.8732
0.2037 37.8462 123 0.3841 0.8732
0.2037 38.7692 126 0.3896 0.8873
0.2018 40.0 130 0.4177 0.8451
0.2018 40.9231 133 0.4548 0.8451
0.2018 41.8462 136 0.4115 0.8310
0.2018 42.7692 139 0.4121 0.8451
0.1721 44.0 143 0.3920 0.8592
0.1721 44.9231 146 0.3693 0.8451
0.1721 45.8462 149 0.3605 0.8592
0.1678 46.7692 152 0.5434 0.8310
0.1678 48.0 156 0.4189 0.8310
0.1678 48.9231 159 0.3124 0.8873
0.1604 49.8462 162 0.3293 0.8873
0.1604 50.7692 165 0.3372 0.9014
0.1604 52.0 169 0.3505 0.8732
0.1406 52.9231 172 0.3095 0.9155
0.1406 53.8462 175 0.3054 0.9155
0.1406 54.7692 178 0.3695 0.8873
0.1492 56.0 182 0.4058 0.8592
0.1492 56.9231 185 0.4650 0.8451
0.1492 57.8462 188 0.4060 0.8592
0.1359 58.7692 191 0.3819 0.8873
0.1359 60.0 195 0.5230 0.7887
0.1359 60.9231 198 0.4986 0.8169
0.1264 61.8462 201 0.4570 0.8310
0.1264 62.7692 204 0.4507 0.8451
0.1264 64.0 208 0.5765 0.8028
0.1478 64.9231 211 0.4514 0.8592
0.1478 65.8462 214 0.4434 0.8873
0.1478 66.7692 217 0.4403 0.8592
0.1398 68.0 221 0.5928 0.8310
0.1398 68.9231 224 0.4587 0.8592
0.1398 69.8462 227 0.4053 0.8451
0.161 70.7692 230 0.4233 0.8592
0.161 72.0 234 0.4264 0.8592
0.161 72.9231 237 0.4127 0.8310
0.1326 73.8462 240 0.4013 0.8592
0.1326 74.7692 243 0.4389 0.8451
0.1326 76.0 247 0.3772 0.8592
0.1236 76.9231 250 0.3600 0.8732
0.1236 77.8462 253 0.3890 0.8873
0.1236 78.7692 256 0.4401 0.8451
0.0973 80.0 260 0.4014 0.8592
0.0973 80.9231 263 0.3766 0.8732
0.0973 81.8462 266 0.3908 0.8451
0.0973 82.7692 269 0.4339 0.8592
0.1079 84.0 273 0.4567 0.8592
0.1079 84.9231 276 0.4415 0.8732
0.1079 85.8462 279 0.4183 0.8592
0.1015 86.7692 282 0.4039 0.8873
0.1015 88.0 286 0.3996 0.8873
0.1015 88.9231 289 0.4031 0.9014
0.1174 89.8462 292 0.4101 0.8732
0.1174 90.7692 295 0.4153 0.8732
0.1174 92.0 299 0.4146 0.8732
0.0968 92.3077 300 0.4145 0.8732

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/deit-base-distilled-patch16-224-65-fold2

Finetuned
(73)
this model

Evaluation results