taylor-swift-model-temp

This model is a fine-tuned version of distilgpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
4.0072 1.0 58 3.7794
3.8685 2.0 116 3.6857
3.8123 3.0 174 3.6220
3.7141 4.0 232 3.5796
3.3674 5.0 290 3.5402
3.556 6.0 348 3.5092
3.442 7.0 406 3.4829
3.5147 8.0 464 3.4609
3.3591 9.0 522 3.4289
3.3258 10.0 580 3.4135
3.2393 11.0 638 3.3918
3.2989 12.0 696 3.3756
3.2535 13.0 754 3.3557
3.1144 14.0 812 3.3352
2.9332 15.0 870 3.3305
3.0371 16.0 928 3.3078
3.0357 17.0 986 3.2889
2.8728 18.0 1044 3.2851
2.9121 19.0 1102 3.2688
2.9804 20.0 1160 3.2562
2.855 21.0 1218 3.2485
2.7546 22.0 1276 3.2275
2.9248 23.0 1334 3.2233
2.9627 24.0 1392 3.2113
2.891 25.0 1450 3.1965
2.7106 26.0 1508 3.1925
2.8863 27.0 1566 3.1836
2.8311 28.0 1624 3.1869
2.6953 29.0 1682 3.1769
2.7916 30.0 1740 3.1717
2.7262 31.0 1798 3.1609
2.6203 32.0 1856 3.1564
2.7066 33.0 1914 3.1492
2.3818 34.0 1972 3.1475
2.7237 35.0 2030 3.1412
2.4593 36.0 2088 3.1372
2.5471 37.0 2146 3.1298
2.6026 38.0 2204 3.1324
2.5049 39.0 2262 3.1285
2.5509 40.0 2320 3.1262
2.7736 41.0 2378 3.1142
2.7144 42.0 2436 3.1159
2.5972 43.0 2494 3.1145
2.5897 44.0 2552 3.1142
2.4131 45.0 2610 3.1152
2.5602 46.0 2668 3.1130
2.4986 47.0 2726 3.1123
2.5507 48.0 2784 3.1108
2.4885 49.0 2842 3.1124
2.4204 50.0 2900 3.1118

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.