gpt2-kl_001_03-hs_cn
This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
73.521 | 0.02 | 10 | 69.5792 |
46.0701 | 0.04 | 20 | 32.9500 |
13.5412 | 0.06 | 30 | 10.6417 |
6.7655 | 0.08 | 40 | 4.2201 |
3.5358 | 0.1 | 50 | 2.0294 |
1.4198 | 0.12 | 60 | 1.0840 |
1.042 | 0.14 | 70 | 0.8606 |
0.896 | 0.16 | 80 | 0.8272 |
0.7281 | 0.18 | 90 | 0.6379 |
0.6989 | 0.2 | 100 | 0.6281 |
0.6405 | 0.22 | 110 | 0.5944 |
0.6289 | 0.24 | 120 | 0.5855 |
0.6205 | 0.26 | 130 | 0.5851 |
0.64 | 0.28 | 140 | 0.5708 |
0.5967 | 0.3 | 150 | 0.5671 |
0.5929 | 0.32 | 160 | 0.5630 |
0.5119 | 0.34 | 170 | 0.5588 |
0.6208 | 0.36 | 180 | 0.5582 |
0.6224 | 0.38 | 190 | 0.5598 |
0.5705 | 0.4 | 200 | 0.5569 |
0.6721 | 0.42 | 210 | 0.5594 |
0.6295 | 0.44 | 220 | 0.5559 |
0.5279 | 0.46 | 230 | 0.5591 |
0.5412 | 0.48 | 240 | 0.5553 |
0.5475 | 0.5 | 250 | 0.5507 |
0.5593 | 0.52 | 260 | 0.5447 |
0.5491 | 0.54 | 270 | 0.5404 |
0.5906 | 0.56 | 280 | 0.5417 |
0.5791 | 0.58 | 290 | 0.5399 |
0.5425 | 0.6 | 300 | 0.5404 |
0.5399 | 0.62 | 310 | 0.5359 |
0.6556 | 0.64 | 320 | 0.5371 |
0.5078 | 0.66 | 330 | 0.5401 |
0.5082 | 0.68 | 340 | 0.5372 |
Framework versions
- Transformers 4.29.0.dev0
- Pytorch 1.12.0a0+bd13bc6
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.