Model card
A CLIP based image feature model. Supervisely pre-trained on animal re-identification datasets. Original model: timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k
Model Details
- Model Type: Animal re-identification / feature backbone
- Model Stats:
- Params (M): 304.5
- GMACs: 174.7
- Activations (M): 128.2
- Image size: 336 x 336
Model Usage
Image Embeddings
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-CLIP-336", pretrained=True)
model = model.eval()
transforms = T.Compose([T.Resize(336),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# output is a (1, num_features) shaped tensor
Citation
@inproceedings{vcermak2024wildlifedatasets,
title={WildlifeDatasets: An open-source toolkit for animal re-identification},
author={{\v{C}}erm{\'a}k, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Papafitsoros, Kostas},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={5953--5963},
year={2024}
}
- Downloads last month
- 38
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The HF Inference API does not support image-classification models for wildlife-datasets
library.