Aurรฉlien-Morgan CLAUDON

Aurelien-Morgan

AI & ML interests

None yet

Recent Activity

Articles

Organizations

Giskard's profile picture Gradio-Blocks-Party's profile picture Keras Dreambooth Event's profile picture Blog-explorers's profile picture huggingPartyParis's profile picture ZeroGPU Explorers's profile picture C4AI Community's profile picture Chinese LLMs on Hugging Face's profile picture Paris AI Running Club's profile picture cvmistralparis's profile picture Hugging Face Discord Community's profile picture Hugging Face Party @ PyTorch Conference's profile picture Nerdy Face's profile picture retrain-pipelines's profile picture

Aurelien-Morgan's activity

reacted to AdinaY's post with ๐Ÿ”ฅ about 3 hours ago
New activity in retrain-pipelines/func_calls_wip about 5 hours ago

[bot] Conversion to Parquet

#1 opened about 17 hours ago by
parquet-converter
reacted to AdinaY's post with ๐Ÿ‘€ 2 days ago
view post
Post
2195
QvQ-72B-Preview๐ŸŽ„ an open weight model for visual reasoning just released by Alibaba_Qwen team
Qwen/qvq-676448c820912236342b9888
โœจ Combines visual understanding & language reasoning.
โœจ Scores 70.3 on MMMU
โœจ Outperforms Qwen2-VL-72B-Instruct in complex problem-solving
replied to FranckAbgrall's post 5 days ago
view reply

That's cool. A little subtle, though. Would you consider a different color for the "dialog bubble" icon too? Making it for instance (dark) golden yellow, plus the mouseover text ?

replied to clem's post 7 days ago
view reply

Everyone got off the waitlist. So cool. So, you managed to privatize the street for many robots to greet us ?

reacted to m-ric's post with ๐Ÿ‘ 7 days ago
view post
Post
2041
๐‡๐ฎ๐ ๐ ๐ข๐ง๐  ๐…๐š๐œ๐ž ๐ซ๐ž๐ฅ๐ž๐š๐ฌ๐ž๐ฌ ๐๐ข๐œ๐จ๐ญ๐ซ๐จ๐ง, ๐š ๐ฆ๐ข๐œ๐ซ๐จ๐ฌ๐œ๐จ๐ฉ๐ข๐œ ๐ฅ๐ข๐› ๐ญ๐ก๐š๐ญ ๐ฌ๐จ๐ฅ๐ฏ๐ž๐ฌ ๐‹๐‹๐Œ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐Ÿ’๐ƒ ๐ฉ๐š๐ซ๐š๐ฅ๐ฅ๐ž๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐Ÿฅณ

๐Ÿ•ฐ๏ธ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.

๐Ÿ‘ด๐Ÿป If they had needed all this time, we would have GPU stories from the time of Pharaoh ๐“‚€: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "

๐Ÿ› ๏ธ But instead, they just parallelized the training on 24k H100s, which made it take just a few months.
This required parallelizing across 4 dimensions: data, tensor, context, pipeline.
And it is infamously hard to do, making for bloated code repos that hold together only by magic.

๐Ÿค ๐—•๐˜‚๐˜ ๐—ป๐—ผ๐˜„ ๐˜„๐—ฒ ๐—ฑ๐—ผ๐—ป'๐˜ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐—ต๐˜‚๐—ด๐—ฒ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐˜€ ๐—ฎ๐—ป๐˜†๐—บ๐—ผ๐—ฟ๐—ฒ! Instead of building mega-training codes, Hugging Face colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry.
And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!

โšก ๐—œ๐˜'๐˜€ ๐˜๐—ถ๐—ป๐˜†, ๐˜†๐—ฒ๐˜ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น:
Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)

Go take a look ๐Ÿ‘‰ https://github.com/huggingface/picotron/tree/main/picotron
  • 1 reply
ยท
reacted to yjernite's post with ๐Ÿ‘€ 13 days ago
view post
Post
2038
๐Ÿ‡ช๐Ÿ‡บ Policy Thoughts in the EU AI Act Implementation ๐Ÿ‡ช๐Ÿ‡บ

There is a lot to like in the first draft of the EU GPAI Code of Practice, especially as regards transparency requirements. The Systemic Risks part, on the other hand, is concerning for both smaller developers and for external stakeholders.

I wrote more on this topic ahead of the next draft. TLDR: more attention to immediate large-scale risks and to collaborative solutions supported by evidence can help everyone - as long as developers disclose sufficient information about their design choices and deployment contexts.

Full blog here, based on our submitted response with @frimelle and @brunatrevelin :

https://huggingface.co/blog/yjernite/eu-draft-cop-risks#on-the-proposed-taxonomy-of-systemic-risks
  • 2 replies
ยท
reacted to julien-c's post with ๐Ÿ‘ 15 days ago
view post
Post
7641
After some heated discussion ๐Ÿ”ฅ, we clarify our intent re. storage limits on the Hub

TL;DR:
- public storage is free, and (unless blatant abuse) unlimited. We do ask that you consider upgrading to PRO and/or Enterprise Hub if possible
- private storage is paid above a significant free tier (1TB if you have a paid account, 100GB otherwise)

docs: https://huggingface.co/docs/hub/storage-limits

We optimize our infrastructure continuously to scale our storage for the coming years of growth in Machine learning, to the benefit of the community ๐Ÿ”ฅ

cc: @reach-vb @pierric @victor and the HF team
ยท
reacted to dvilasuero's post with โค๏ธ 19 days ago
view post
Post
2263
๐ŸŒ Announcing Global-MMLU: an improved MMLU Open dataset with evaluation coverage across 42 languages, built with Argilla and the Hugging Face community.

Global-MMLU is the result of months of work with the goal of advancing Multilingual LLM evaluation. It's been an amazing open science effort with collaborators from Cohere For AI, Mila - Quebec Artificial Intelligence Institute, EPFL, Massachusetts Institute of Technology, AI Singapore, National University of Singapore, KAIST, Instituto Superior Tรฉcnico, Carnegie Mellon University, CONICET, and University of Buenos Aires.

๐Ÿท๏ธ +200 contributors used Argilla MMLU questions where regional, dialect, or cultural knowledge was required to answer correctly. 85% of the questions required Western-centric knowledge!

Thanks to this annotation process, the open dataset contains two subsets:

1. ๐Ÿ—ฝ Culturally Agnostic: no specific regional, cultural knowledge is required.
2. โš–๏ธ Culturally Sensitive: requires dialect, cultural knowledge or geographic knowledge to answer correctly.

Moreover, we provide high quality translations of 25 out of 42 languages, thanks again to the community and professional annotators leveraging Argilla on the Hub.

I hope this will ensure a better understanding of the limitations and challenges for making open AI useful for many languages.

Dataset: CohereForAI/Global-MMLU
reacted to jsulz's post with ๐Ÿ‘ 20 days ago
view post
Post
1296
Doing a lot of benchmarking and visualization work, which means I'm always searching for interesting repos in terms of file types, size, branches, and overall structure.

To help, I built a Space jsulz/repo-info that lets you search for any repo and get back:

- Treemap of the repository, color coded by file/directory size
- Repo branches and their size
- Cumulative size of different file types (e.g., the total size of all the safetensors in the repo)

And because I'm interested in how this will fit in our work to leverage content-defined chunking for versioning repos on the Hub
- https://huggingface.co/blog/from-files-to-chunks - everything has the number of chunks (1 chunk = 64KB) as well as the total size in bytes.

Some of the treemaps are pretty cool. Attached are black-forest-labs/FLUX.1-dev and for fun laion/laion-audio-preview (which has nearly 10k .tar files ๐Ÿคฏ)

  • 2 replies
ยท
reacted to cfahlgren1's post with ๐Ÿ‘ 22 days ago
view post
Post
1811
You can just ask things ๐Ÿ—ฃ๏ธ

"show me messages in the coding category that are in the top 10% of reward model scores"

Download really high quality instructions from the Llama3.1 405B synthetic dataset ๐Ÿ”ฅ

argilla/magpie-ultra-v1.0