Edit model card

vit-base-patch16-224-RU5-40

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6150
  • Accuracy: 0.85

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3806 0.95 14 1.3385 0.4833
1.3323 1.97 29 1.1803 0.6
1.1086 2.98 44 0.9835 0.6333
0.927 4.0 59 0.8340 0.7167
0.6591 4.95 73 0.7843 0.7167
0.5201 5.97 88 0.7683 0.7167
0.3763 6.98 103 0.7880 0.6833
0.26 8.0 118 0.6876 0.7667
0.2219 8.95 132 0.7188 0.7833
0.2243 9.97 147 0.8730 0.7
0.178 10.98 162 0.6872 0.7833
0.1944 12.0 177 0.6150 0.85
0.1422 12.95 191 0.6832 0.7833
0.1117 13.97 206 0.7590 0.7833
0.117 14.98 221 0.8429 0.7667
0.1176 16.0 236 0.9741 0.7667
0.1081 16.95 250 0.9106 0.7833
0.0928 17.97 265 0.9179 0.7333
0.0848 18.98 280 0.9695 0.7667
0.1045 20.0 295 0.8805 0.8
0.1159 20.95 309 0.9458 0.7667
0.0748 21.97 324 0.8463 0.7667
0.0641 22.98 339 0.8815 0.8
0.0799 24.0 354 0.9426 0.75
0.0921 24.95 368 0.9212 0.75
0.0602 25.97 383 0.9828 0.75
0.059 26.98 398 0.8861 0.8
0.0669 28.0 413 0.9302 0.7333
0.0508 28.95 427 1.0306 0.7167
0.0585 29.97 442 0.9149 0.75
0.0619 30.98 457 0.8942 0.7833
0.0626 32.0 472 0.9069 0.7667
0.0575 32.95 486 0.8656 0.8
0.0483 33.97 501 0.8779 0.8167
0.0576 34.98 516 0.9078 0.7833
0.0633 36.0 531 0.8880 0.8
0.0511 36.95 545 0.8573 0.8
0.049 37.97 560 0.8564 0.8

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Augusto777/vit-base-patch16-224-RU5-40

Finetuned
(469)
this model

Evaluation results