margin-element-detector-fm-resilient-puddle-10

This model is a fine-tuned version of microsoft/table-transformer-detection on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4052
  • Loss Ce: 0.0393
  • Loss Bbox: 0.0119
  • Cardinality Error: 1.0210
  • Giou: 84.6670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Loss Ce Loss Bbox Cardinality Error Giou
1.8005 0.5 1250 1.7181 0.3317 0.0619 1.8440 46.1650
1.6365 1.0 2500 1.5861 0.3064 0.0540 2.0670 49.5198
1.4739 1.5 3750 1.4081 0.2414 0.0487 1.2300 53.8370
1.3831 2.0 5000 1.2797 0.1926 0.0424 1.3180 56.2369
1.2362 2.5 6250 1.2517 0.1801 0.0406 1.3390 56.5658
1.2328 3.0 7500 1.2189 0.1650 0.0387 1.2300 56.9758
1.1675 3.5 8750 1.0386 0.1388 0.0317 1.1000 62.9430
1.1411 4.0 10000 1.0574 0.1392 0.0347 1.0590 62.7719
1.0822 4.5 11250 1.0113 0.1187 0.0337 1.0750 63.8054
1.0703 5.0 12500 0.9718 0.1181 0.0301 1.0770 64.8419
1.0278 5.5 13750 0.9538 0.1284 0.0276 1.1210 65.6340
1.044 6.0 15000 0.9157 0.1087 0.0294 1.0430 67.0038
0.9623 6.5 16250 0.9210 0.1135 0.0291 1.0630 66.9005
0.9883 7.0 17500 0.9465 0.1058 0.0311 1.0280 65.7425
0.953 7.5 18750 0.9267 0.0954 0.0292 1.0160 65.7261
0.9673 8.0 20000 0.8716 0.0904 0.0259 1.0230 67.4044
0.8954 8.5 21250 0.8415 0.0812 0.0256 1.0260 68.3924
0.9177 9.0 22500 0.8036 0.0819 0.0237 1.0170 69.8347
0.8572 9.5 23750 0.8165 0.0782 0.0234 1.0130 68.9332
0.8408 10.0 25000 0.8299 0.0767 0.0235 1.0390 68.2173
0.8281 10.5 26250 0.7925 0.0824 0.0229 1.0150 70.2080
0.8488 11.0 27500 0.8325 0.0718 0.0260 0.9950 68.4594
0.7916 11.5 28750 0.8020 0.0785 0.0231 1.0410 69.5891
0.8569 12.0 30000 0.7565 0.0681 0.0223 1.0180 71.1528
0.8023 12.5 31250 0.7649 0.0687 0.0217 1.0190 70.6185
0.776 13.0 32500 0.7613 0.0688 0.0237 0.9970 71.3041
0.7715 13.5 33750 0.7440 0.0689 0.0215 0.9850 71.6202
0.7823 14.0 35000 0.7766 0.0717 0.0220 1.0280 70.2445
0.7579 14.5 36250 0.7339 0.0613 0.0205 1.0510 71.4997
0.7693 15.0 37500 0.7738 0.0661 0.0225 1.0220 70.2403
0.713 15.5 38750 0.6801 0.0614 0.0190 1.0430 73.8128
0.6734 16.0 40000 0.7041 0.0623 0.0213 1.0100 73.2345
0.7289 16.5 41250 0.6959 0.0607 0.0209 1.0060 73.4663
0.7205 17.0 42500 0.7272 0.0704 0.0215 1.0110 72.5326
0.6855 17.5 43750 0.6586 0.0624 0.0195 1.0330 75.0753
0.6523 18.0 45000 0.6495 0.0557 0.0192 1.0380 75.1177
0.6519 18.5 46250 0.6763 0.0589 0.0198 1.0060 74.0859
0.6568 19.0 47500 0.6548 0.0758 0.0181 1.0200 75.5647
0.6254 19.5 48750 0.6494 0.0584 0.0193 1.0320 75.2703
0.6487 20.0 50000 0.6183 0.0624 0.0183 1.0570 76.7859
0.6287 20.5 51250 0.6432 0.0565 0.0193 1.0010 75.4949
0.6163 21.0 52500 0.6062 0.0485 0.0162 1.0110 76.1785
0.6029 21.5 53750 0.6158 0.0504 0.0174 1.0200 76.0916
0.622 22.0 55000 0.6186 0.0546 0.0180 0.9950 76.3034
0.597 22.5 56250 0.6172 0.0513 0.0180 1.0120 76.2164
0.5684 23.0 57500 0.5967 0.0527 0.0175 1.0250 77.1797
0.5899 23.5 58750 0.6035 0.0538 0.0178 1.0250 76.9589
0.5592 24.0 60000 0.6320 0.0548 0.0179 1.0180 75.6223
0.5994 24.5 61250 0.5444 0.0529 0.0159 1.0210 79.3936
0.5547 25.0 62500 0.5969 0.0527 0.0174 1.0320 77.1495
0.5135 25.5 63750 0.5651 0.0524 0.0163 1.0310 78.4524
0.5504 26.0 65000 0.5823 0.0451 0.0172 1.0150 77.4492
0.5342 26.5 66250 0.5905 0.0489 0.0169 1.0090 77.1484
0.5166 27.0 67500 0.5651 0.0488 0.0157 1.0010 78.1068
0.5311 27.5 68750 0.5585 0.0532 0.0162 1.0280 78.7836
0.5178 28.0 70000 0.5315 0.0451 0.0152 1.0190 79.4811
0.4967 28.5 71250 0.5399 0.0518 0.0151 1.0210 79.3648
0.5137 29.0 72500 0.5199 0.0461 0.0143 1.0310 79.8946
0.4903 29.5 73750 0.4885 0.0470 0.0144 1.0100 81.5240
0.4739 30.0 75000 0.4985 0.0447 0.0134 1.0150 80.6692
0.4455 30.5 76250 0.4999 0.0461 0.0140 1.0290 80.8051
0.4476 31.0 77500 0.4961 0.0466 0.0140 1.0090 81.0313
0.4581 31.5 78750 0.4980 0.0406 0.0141 1.0310 80.6620
0.4413 32.0 80000 0.5194 0.0431 0.0144 1.0300 79.7935
0.4332 32.5 81250 0.4861 0.0423 0.0139 1.0270 81.2911
0.444 33.0 82500 0.4515 0.0408 0.0127 1.0290 82.6487
0.4323 33.5 83750 0.4629 0.0434 0.0134 1.0300 82.3851
0.4299 34.0 85000 0.4602 0.0403 0.0129 1.0220 82.2341
0.403 34.5 86250 0.4693 0.0440 0.0133 1.0350 82.0647
0.4001 35.0 87500 0.4582 0.0397 0.0132 1.0210 82.3646
0.3987 35.5 88750 0.4354 0.0405 0.0125 1.0220 83.3753
0.3814 36.0 90000 0.4327 0.0397 0.0129 1.0290 83.5913
0.3694 36.5 91250 0.4285 0.0395 0.0128 1.0370 83.7543
0.3791 37.0 92500 0.4262 0.0382 0.0123 1.0200 83.6733
0.3646 37.5 93750 0.4133 0.0406 0.0123 1.0460 84.4284
0.3756 38.0 95000 0.4211 0.0397 0.0121 1.0080 83.9594
0.3566 38.5 96250 0.4125 0.0382 0.0120 1.0190 84.2887
0.3601 39.0 97500 0.4082 0.0395 0.0119 1.0320 84.5329
0.3483 39.5 98750 0.4064 0.0395 0.0119 1.0230 84.6185
0.3485 40.0 100000 0.4052 0.0393 0.0119 1.0210 84.6670

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.13.3
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AmineAllo/margin-element-detector-fm-resilient-puddle-10

Finetuned
(11)
this model