Aliissa99/test2
This model is a fine-tuned version of almanach/camembert-bio-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.6030
- Validation Loss: 1.3863
- Train Accuracy: 0.1707
- Epoch: 11
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.01, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
1.5039 | 1.3863 | 0.2195 | 0 |
1.5840 | 1.3863 | 0.2622 | 1 |
1.6272 | 1.3863 | 0.2195 | 2 |
1.6190 | 1.3863 | 0.2073 | 3 |
1.5786 | 1.3863 | 0.2439 | 4 |
1.6480 | 1.3863 | 0.2561 | 5 |
1.5920 | 1.3863 | 0.2012 | 6 |
1.6015 | 1.3863 | 0.2073 | 7 |
1.6395 | 1.3863 | 0.2317 | 8 |
1.6264 | 1.3863 | 0.2317 | 9 |
1.5692 | 1.3863 | 0.2683 | 10 |
1.6030 | 1.3863 | 0.1707 | 11 |
Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 13
Inference API (serverless) does not yet support transformers models for this pipeline type.