Text Generation
Transformers
PyTorch
Safetensors
English
llama
finance
Eval Results
text-generation-inference
Inference Endpoints
finance-chat / README.md
AdaptLLM's picture
Update README.md
f2c4acb verified
|
raw
history blame
11.1 kB
metadata
language:
  - en
license: llama2
tags:
  - finance
datasets:
  - Open-Orca/OpenOrca
  - GAIR/lima
  - WizardLM/WizardLM_evol_instruct_V2_196k
metrics:
  - accuracy
pipeline_tag: text-generation
model-index:
  - name: finance-chat
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 53.75
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 76.6
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 50.16
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 44.54
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 18.8
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard

Adapting LLMs to Domains via Continual Pre-Training (ICLR 2024)

This repo contains the domain-specific chat model developed from LLaMA-2-Chat-7B, using the method in our paper Adapting Large Language Models via Reading Comprehension.

We explore continued pre-training on domain-specific corpora for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to transform large-scale pre-training corpora into reading comprehension texts, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. Our 7B model competes with much larger domain-specific models like BloombergGPT-50B.

[2024/11/29] 🤗 Introduce the multimodal version of AdaptLLM at AdaMLLM, for adapting MLLMs to domains 🤗

**************************** Updates ****************************

1. Domain-Specific Models

LLaMA-1-7B

In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: Biomedicine-LLM, Finance-LLM and Law-LLM, the performances of our AdaptLLM compared to other domain-specific LLMs are:

LLaMA-1-13B

Moreover, we scale up our base model to LLaMA-1-13B to see if our method is similarly effective for larger-scale models, and the results are consistently positive too: Biomedicine-LLM-13B, Finance-LLM-13B and Law-LLM-13B.

LLaMA-2-Chat

Our method is also effective for aligned models! LLaMA-2-Chat requires a specific data format, and our reading comprehension can perfectly fit the data format by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: Biomedicine-Chat, Finance-Chat and Law-Chat

For example, to chat with the finance-chat model:

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat")
tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat")

# Put your input here:
user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange
MMM Chicago Stock Exchange, Inc.
1.500% Notes due 2026 MMM26 New York Stock Exchange
1.750% Notes due 2030 MMM30 New York Stock Exchange
1.500% Notes due 2031 MMM31 New York Stock Exchange

Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''

# Apply the prompt template and system prompt of LLaMA-2-Chat demo for chat models (NOTE: NO prompt template is required for base models!)
our_system_prompt = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n" # Please do NOT change this
prompt = f"<s>[INST] <<SYS>>{our_system_prompt}<</SYS>>\n\n{user_input} [/INST]"

# # NOTE:
# # If you want to apply your own system prompt, please integrate it into the instruction part following our system prompt like this:
# your_system_prompt = "Please, check if the answer can be inferred from the pieces of context provided."
# prompt = f"<s>[INST] <<SYS>>{our_system_prompt}<</SYS>>\n\n{your_system_prompt}\n{user_input} [/INST]"

inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
outputs = model.generate(input_ids=inputs, max_length=4096)[0]

answer_start = int(inputs.shape[-1])
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)

print(pred)

LLaMA-3-8B (💡New!)

In our recent research on Instruction-Pretrain, we developed a context-based instruction synthesizer to augment the raw corpora with instruction-response pairs, enabling Llama3-8B to be comparable to or even outperform Llama3-70B: Finance-Llama3-8B, Biomedicine-Llama3-8B.

2. Domain-Specific Tasks

To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: biomedicine-tasks, finance-tasks, and law-tasks.

Note: those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 53.26
AI2 Reasoning Challenge (25-Shot) 53.75
HellaSwag (10-Shot) 76.60
MMLU (5-Shot) 50.16
TruthfulQA (0-shot) 44.54
Winogrande (5-shot) 75.69
GSM8k (5-shot) 18.80

Citation

If you find our work helpful, please cite us:

@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}