Text Generation
Transformers
Safetensors
llama
text-generation-inference
Inference Endpoints
CHANGELOG.md DELETED
@@ -1,12 +0,0 @@
1
-
2
- ## version: v20240321
3
- - train 17B tokens with 256k context window
4
- - recall of "Needle in A HayStack": 99.0% ![](./images/v20240321.png)
5
-
6
- ## version: v20240318
7
- - train 12B tokens with 256k context window
8
- - recall of "Needle in A HayStack": 97.5% ![](./images/v20240318.png)
9
-
10
- ## version: initial
11
- - train 6B tokens with 256k context window
12
- - recall of "Needle in A HayStack": 87.1% ![](./images/initail.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright 2024 01.AI
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,5 +1,7 @@
1
  ---
2
- license: apache-2.0
 
 
3
  widget:
4
  - example_title: "Yi-34B-Chat"
5
  text: "hi"
@@ -29,6 +31,18 @@ pipeline_tag: text-generation
29
  </a>
30
  </div>
31
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  <div style="display: inline-block;">
33
  <a href="mailto:oss@01.ai">
34
  <img src="https://img.shields.io/badge/✉️-yi@01.ai-FFE01B">
@@ -46,20 +60,10 @@ pipeline_tag: text-generation
46
  </p>
47
 
48
  <p align="center">
49
- 👩‍🚀 Ask questions or discuss ideas on <a href="https://github.com/01-ai/Yi/discussions" target="_blank"> GitHub </a>
50
  </p>
51
 
52
- <p align="center">
53
- 👋 Join us on <a href="https://discord.gg/hYUwWddeAu" target="_blank"> 👾 Discord </a> or <a href="有官方的微信群嘛 · Issue #43 · 01-ai/Yi" target="_blank"> 💬 WeChat </a>
54
- </p>
55
 
56
- <p align="center">
57
- 📝 Check out <a href="https://arxiv.org/abs/2403.04652"> Yi Tech Report </a>
58
- </p>
59
-
60
- <p align="center">
61
- 📚 Grow at <a href="#learning-hub"> Yi Learning Hub </a>
62
- </p>
63
  <!-- DO NOT REMOVE ME -->
64
 
65
  <hr>
@@ -72,7 +76,7 @@ pipeline_tag: text-generation
72
  - [Models](#models)
73
  - [Chat models](#chat-models)
74
  - [Base models](#base-models)
75
- - [Model info](#model-info)
76
  - [News](#news)
77
  - [How to use Yi?](#how-to-use-yi)
78
  - [Quick start](#quick-start)
@@ -85,7 +89,6 @@ pipeline_tag: text-generation
85
  - [Fine-tuning](#fine-tuning)
86
  - [Quantization](#quantization)
87
  - [Deployment](#deployment)
88
- - [FAQ](#faq)
89
  - [Learning hub](#learning-hub)
90
  - [Why Yi?](#why-yi)
91
  - [Ecosystem](#ecosystem)
@@ -119,14 +122,13 @@ pipeline_tag: text-generation
119
  - 🙌 Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example,
120
 
121
  - Yi-34B-Chat model **landed in second place (following GPT-4 Turbo)**, outperforming other LLMs (such as GPT-4, Mixtral, Claude) on the AlpacaEval Leaderboard (based on data available up to January 2024).
122
-
123
  - Yi-34B model **ranked first among all existing open-source models** (such as Falcon-180B, Llama-70B, Claude) in **both English and Chinese** on various benchmarks, including Hugging Face Open LLM Leaderboard (pre-trained) and C-Eval (based on data available up to November 2023).
124
 
125
  - 🙏 (Credits to Llama) Thanks to the Transformer and Llama open-source communities, as they reduce the efforts required to build from scratch and enable the utilization of the same tools within the AI ecosystem.
126
 
127
  <details style="display: inline;"><summary> If you're interested in Yi's adoption of Llama architecture and license usage policy, see <span style="color: green;">Yi's relation with Llama.</span> ⬇️</summary> <ul> <br>
128
 
129
-
130
  > 💡 TL;DR
131
  >
132
  > The Yi series models adopt the same model architecture as Llama but are **NOT** derivatives of Llama.
@@ -151,19 +153,7 @@ pipeline_tag: text-generation
151
 
152
  ## News
153
 
154
- <details>
155
- <summary>🔥 <b>2024-07-29</b>: The <a href="https://github.com/Haijian06/Yi/tree/main/Cookbook">Yi Cookbook 1.0 </a> is released, featuring tutorials and examples in both Chinese and English.</summary>
156
- </details>
157
-
158
- <details>
159
- <summary>🎯 <b>2024-05-13</b>: The <a href="https://github.com/01-ai/Yi-1.5">Yi-1.5 series models </a> are open-sourced, further improving coding, math, reasoning, and instruction-following abilities.</summary>
160
- </details>
161
-
162
- <details>
163
- <summary>🎯 <b>2024-03-16</b>: The <code>Yi-9B-200K</code> is open-sourced and available to the public.</summary>
164
- </details>
165
-
166
- <details>
167
  <summary>🎯 <b>2024-03-08</b>: <a href="https://arxiv.org/abs/2403.04652">Yi Tech Report</a> is published! </summary>
168
  </details>
169
 
@@ -242,27 +232,28 @@ If you want to deploy Yi models, make sure you meet the [software and hardware r
242
 
243
  ### Chat models
244
 
245
- | Model | Download |
246
- |---|---|
247
- |Yi-34B-Chat | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-34B-Chat) |
248
- |Yi-34B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-4bits/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-34B-Chat-4bits) |
249
- |Yi-34B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-8bits) ��� [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-8bits/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-34B-Chat-8bits) |
250
- |Yi-6B-Chat| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat) |
251
- |Yi-6B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-4bits/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-4bits) |
252
- |Yi-6B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-8bits/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-8bits) |
 
253
 
254
  <sub><sup> - 4-bit series models are quantized by AWQ. <br> - 8-bit series models are quantized by GPTQ <br> - All quantized models have a low barrier to use since they can be deployed on consumer-grade GPUs (e.g., 3090, 4090). </sup></sub>
255
 
256
  ### Base models
257
 
258
- | Model | Download |
259
  |---|---|
260
- |Yi-34B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-8bits) |
261
- |Yi-34B-200K|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-200K/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-8bits)|
262
- |Yi-9B|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-9B) • [🤖 ModelScope](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-8bits) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-9B)|
263
- |Yi-9B-200K | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-9B-200K) • [🤖 ModelScope](https://wisemodel.cn/models/01.AI/Yi-9B-200K) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-8bits) |
264
- |Yi-6B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-8bits) |
265
- |Yi-6B-200K | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-200K/summary) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-6B-Chat-8bits) |
266
 
267
  <sub><sup> - 200k is roughly equivalent to 400,000 Chinese characters. <br> - If you want to use the previous version of the Yi-34B-200K (released on Nov 5, 2023), run `git checkout 069cd341d60f4ce4b07ec394e82b79e94f656cf` to download the weight. </sup></sub>
268
 
@@ -270,35 +261,11 @@ If you want to deploy Yi models, make sure you meet the [software and hardware r
270
 
271
  - For chat and base models
272
 
273
- <table>
274
- <thead>
275
- <tr>
276
- <th>Model</th>
277
- <th>Intro</th>
278
- <th>Default context window</th>
279
- <th>Pretrained tokens</th>
280
- <th>Training Data Date</th>
281
- </tr>
282
- </thead>
283
- <tbody><tr>
284
- <td>6B series models</td>
285
- <td>They are suitable for personal and academic use.</td>
286
- <td rowspan="3">4K</td>
287
- <td>3T</td>
288
- <td rowspan="3">Up to June 2023</td>
289
- </tr>
290
- <tr>
291
- <td>9B series models</td>
292
- <td>It is the best at coding and math in the Yi series models.</td>
293
- <td>Yi-9B is continuously trained based on Yi-6B, using 0.8T tokens.</td>
294
- </tr>
295
- <tr>
296
- <td>34B series models</td>
297
- <td>They are suitable for personal, academic, and commercial (particularly for small and medium-sized enterprises) purposes. It&#39;s a cost-effective solution that&#39;s affordable and equipped with emergent ability.</td>
298
- <td>3T</td>
299
- </tr>
300
- </tbody></table>
301
-
302
 
303
  - For chat models
304
 
@@ -311,8 +278,8 @@ If you want to deploy Yi models, make sure you meet the [software and hardware r
311
  <li>Non-determinism in re-generation: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions.</li>
312
  <li>Cumulative Error: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc.</li>
313
  <li>To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as temperature, top_p, or top_k. These adjustments can help in the balance between creativity and coherence in the model's outputs.</li>
314
- </ul>
315
- </details>
316
 
317
  <p align="right"> [
318
  <a href="#top">Back to top ⬆️ </a> ]
@@ -331,12 +298,11 @@ If you want to deploy Yi models, make sure you meet the [software and hardware r
331
  - [Fine-tuning](#fine-tuning)
332
  - [Quantization](#quantization)
333
  - [Deployment](#deployment)
334
- - [FAQ](#faq)
335
  - [Learning hub](#learning-hub)
336
 
337
  ## Quick start
338
 
339
- > **💡 Tip**: If you want to get started with the Yi model and explore different methods for inference, check out the [Yi Cookbook](https://github.com/01-ai/Yi/tree/main/Cookbook).
340
 
341
  ### Choose your path
342
 
@@ -371,7 +337,7 @@ If you want to explore more features of Yi, you can adopt one of these methods:
371
  ##### 🙋‍♀️ Run Yi in playground
372
 
373
  If you want to chat with Yi with more customizable options (e.g., system prompt, temperature, repetition penalty, etc.), you can try one of the following options:
374
-
375
  - [Yi-34B-Chat-Playground](https://platform.lingyiwanwu.com/prompt/playground) (Yi official)
376
  - Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
377
 
@@ -396,7 +362,7 @@ If you want to chat with Yi with more customizable options (e.g., system prompt,
396
  This tutorial guides you through every step of running **Yi-34B-Chat locally on an A800 (80G)** and then performing inference.
397
 
398
  #### Step 0: Prerequisites
399
-
400
  - Make sure Python 3.10 or a later version is installed.
401
 
402
  - If you want to run other Yi models, see [software and hardware requirements](#deployment).
@@ -498,11 +464,11 @@ You can perform inference with Yi chat or base models as below.
498
 
499
  ```bash
500
  from transformers import AutoModelForCausalLM, AutoTokenizer
501
-
502
  MODEL_DIR = "01-ai/Yi-9B"
503
  model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, torch_dtype="auto")
504
  tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=False)
505
-
506
  input_text = "# write the quick sort algorithm"
507
  inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
508
  outputs = model.generate(**inputs, max_length=256)
@@ -521,15 +487,14 @@ You can perform inference with Yi chat or base models as below.
521
  middle = [x for x in arr if x == pivot]
522
  right = [x for x in arr if x > pivot]
523
  return quick_sort(left) + middle + quick_sort(right)
524
-
525
  # test the quick sort algorithm
526
  print(quick_sort([3, 6, 8, 10, 1, 2, 1]))
527
  ```
528
 
529
-
530
- <p align="right"> [
531
- <a href="#top">Back to top ⬆️ </a> ]
532
- </p>
533
 
534
  ### Quick start - Docker
535
  <details>
@@ -547,7 +512,7 @@ ghcr.io/01-ai/yi:latest
547
 
548
  <h4>Step 2: Perform inference</h4>
549
  <p>You can perform inference with Yi chat or base models as below.</p>
550
-
551
  <h5>Perform inference with Yi chat model</h5>
552
  <p>The steps are similar to <a href="#perform-inference-with-yi-chat-model">pip - Perform inference with Yi chat model</a>.</p>
553
  <p><strong>Note</strong> that the only difference is to set <code>model_path = '&lt;your-model-mount-path&gt;'</code> instead of <code>model_path = '&lt;your-model-path&gt;'</code>.</p>
@@ -572,10 +537,9 @@ To install the dependencies, follow these steps:
572
 
573
 
574
  ### Quick start - llama.cpp
575
- <a href="https://github.com/01-ai/Yi/blob/main/docs/README_llama.cpp.md">The following tutorial </a> will guide you through every step of running a quantized model (<a href="https://huggingface.co/XeIaso/yi-chat-6B-GGUF/tree/main">Yi-chat-6B-2bits</a>) locally and then performing inference.
576
  <details>
577
  <summary> Run Yi-chat-6B-2bits locally with llama.cpp: a step-by-step guide. ⬇️</summary>
578
- <br><a href="https://github.com/01-ai/Yi/blob/main/docs/README_llama.cpp.md">This tutorial</a> guides you through every step of running a quantized model (<a href="https://huggingface.co/XeIaso/yi-chat-6B-GGUF/tree/main">Yi-chat-6B-2bits</a>) locally and then performing inference.</p>
579
 
580
  - [Step 0: Prerequisites](#step-0-prerequisites)
581
  - [Step 1: Download llama.cpp](#step-1-download-llamacpp)
@@ -669,7 +633,7 @@ Now you have successfully asked a question to the Yi model and got an answer!
669
 
670
  ```bash
671
  ...
672
-
673
  llama_new_context_with_model: n_ctx = 2048
674
  llama_new_context_with_model: freq_base = 5000000.0
675
  llama_new_context_with_model: freq_scale = 1
@@ -692,7 +656,7 @@ Now you have successfully asked a question to the Yi model and got an answer!
692
  ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 156.02 MiB, ( 2785.45 / 10922.67)
693
  Available slots:
694
  -> Slot 0 - max context: 2048
695
-
696
  llama server listening at http://0.0.0.0:8080
697
  ```
698
 
@@ -794,11 +758,11 @@ pip install torch==2.0.1 deepspeed==0.10 tensorboard transformers datasets sente
794
 
795
  #### Hardware Setup
796
 
797
- For the Yi-6B model, a node with 4 GPUs, each with GPU memory larger than 60GB, is recommended.
798
 
799
- For the Yi-34B model, because the usage of the zero-offload technique consumes a lot of CPU memory, please be careful to limit the number of GPUs in the 34B finetune training. Please use CUDA_VISIBLE_DEVICES to limit the number of GPUs (as shown in scripts/run_sft_Yi_34b.sh).
800
 
801
- A typical hardware setup for finetuning the 34B model is a node with 8 GPUs (limited to 4 in running by CUDA_VISIBLE_DEVICES=0,1,2,3), each with GPU memory larger than 80GB, and total CPU memory larger than 900GB.
802
 
803
  #### Quick Start
804
 
@@ -881,12 +845,12 @@ python quantization/gptq/eval_quantized_model.py \
881
  --trust_remote_code
882
  ```
883
 
884
- <details style="display: inline;"><summary>For details, see the explanations below. ⬇️</summary> <ul>
885
 
886
  #### GPT-Q quantization
887
 
888
- [GPT-Q](https://github.com/IST-DASLab/gptq) is a PTQ (Post-Training Quantization)
889
- method. It saves memory and provides potential speedups while retaining the accuracy
890
  of the model.
891
 
892
  Yi models can be GPT-Q quantized without a lot of efforts.
@@ -906,6 +870,7 @@ python quant_autogptq.py --model /base_model \
906
  --output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
907
  ```
908
 
 
909
  ##### Run Quantized Model
910
 
911
  You can run a quantized model using the `eval_quantized_model.py`:
@@ -917,7 +882,6 @@ python eval_quantized_model.py --model /quantized_model --trust_remote_code
917
  </details>
918
 
919
  #### AWQ
920
-
921
  ```bash
922
  python quantization/awq/quant_autoawq.py \
923
  --model /base_model \
@@ -932,11 +896,11 @@ python quantization/awq/eval_quantized_model.py \
932
  --model /quantized_model \
933
  --trust_remote_code
934
  ```
935
- <details style="display: inline;"><summary>For details, see the explanations below. ⬇️</summary> <ul>
936
 
937
  #### AWQ quantization
938
 
939
- [AWQ](https://github.com/mit-han-lab/llm-awq) is a PTQ (Post-Training Quantization)
940
  method. It's an efficient and accurate low-bit weight quantization (INT3/4) for LLMs.
941
 
942
  Yi models can be AWQ quantized without a lot of efforts.
@@ -1021,50 +985,12 @@ Below are detailed minimum VRAM requirements under different batch use cases.
1021
  <a href="#top">Back to top ⬆️ </a> ]
1022
  </p>
1023
 
1024
- ### FAQ
1025
- <details>
1026
- <summary> If you have any questions while using the Yi series models, the answers provided below could serve as a helpful reference for you. ⬇️</summary>
1027
- <br>
1028
-
1029
- #### 💡Fine-tuning
1030
- - <strong>Base model or Chat model - which to fine-tune?</strong>
1031
- <br>The choice of pre-trained language model for fine-tuning hinges on the computational resources you have at your disposal and the particular demands of your task.
1032
- - If you are working with a substantial volume of fine-tuning data (say, over 10,000 samples), the Base model could be your go-to choice.
1033
- - On the other hand, if your fine-tuning data is not quite as extensive, opting for the Chat model might be a more fitting choice.
1034
- - It is generally advisable to fine-tune both the Base and Chat models, compare their performance, and then pick the model that best aligns with your specific requirements.
1035
- - <strong>Yi-34B versus Yi-34B-Chat for full-scale fine-tuning - what is the difference?</strong>
1036
- <br>
1037
- The key distinction between full-scale fine-tuning on `Yi-34B`and `Yi-34B-Chat` comes down to the fine-tuning approach and outcomes.
1038
- - Yi-34B-Chat employs a Special Fine-Tuning (SFT) method, resulting in responses that mirror human conversation style more closely.
1039
- - The Base model's fine-tuning is more versatile, with a relatively high performance potential.
1040
- - If you are confident in the quality of your data, fine-tuning with `Yi-34B` could be your go-to.
1041
- - If you are aiming for model-generated responses that better mimic human conversational style, or if you have doubts about your data quality, `Yi-34B-Chat` might be your best bet.
1042
-
1043
- #### 💡Quantization
1044
- - <strong>Quantized model versus original model - what is the performance gap?</strong>
1045
- - The performance variance is largely contingent on the quantization method employed and the specific use cases of these models. For instance, when it comes to models provided by the AWQ official, from a Benchmark standpoint, quantization might result in a minor performance drop of a few percentage points.
1046
- - Subjectively speaking, in situations like logical reasoning, even a 1% performance shift could impact the accuracy of the output results.
1047
-
1048
- #### 💡General
1049
- - <strong>Where can I source fine-tuning question answering datasets?</strong>
1050
- - You can find fine-tuning question answering datasets on platforms like Hugging Face, with datasets like [m-a-p/COIG-CQIA](https://huggingface.co/datasets/m-a-p/COIG-CQIA) readily available.
1051
- - Additionally, Github offers fine-tuning frameworks, such as [hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory), which integrates pre-made datasets.
1052
-
1053
- - <strong>What is the GPU memory requirement for fine-tuning Yi-34B FP16?</strong>
1054
- <br>
1055
- The GPU memory needed for fine-tuning 34B FP16 hinges on the specific fine-tuning method employed. For full parameter fine-tuning, you'll need 8 GPUs each with 80 GB; however, more economical solutions like Lora require less. For more details, check out [hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). Also, consider using BF16 instead of FP16 for fine-tuning to optimize performance.
1056
-
1057
- - <strong>Are there any third-party platforms that support chat functionality for the Yi-34b-200k model?</strong>
1058
- <br>
1059
- If you're looking for third-party Chats, options include [fireworks.ai](https://fireworks.ai/login?callbackURL=https://fireworks.ai/models/fireworks/yi-34b-chat).
1060
- </details>
1061
-
1062
  ### Learning hub
1063
 
1064
  <details>
1065
  <summary> If you want to learn Yi, you can find a wealth of helpful educational resources here. ⬇️</summary>
1066
  <br>
1067
-
1068
  Welcome to the Yi learning hub!
1069
 
1070
  Whether you're a seasoned developer or a newcomer, you can find a wealth of helpful educational resources to enhance your understanding and skills with Yi models, including insightful blog posts, comprehensive video tutorials, hands-on guides, and more.
@@ -1076,109 +1002,26 @@ At the same time, we also warmly invite you to join our collaborative effort by
1076
  With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
1077
 
1078
  #### Tutorials
1079
-
1080
- ##### Blog tutorials
1081
-
1082
- | Deliverable | Date | Author |
1083
- | ------------------------------------------------------------ | ---------- | ------------------------------------------------------------ |
1084
- | [使用 Dify、Meilisearch、零一万物模型实现最简单的 RAG 应用(三):AI 电影推荐](https://mp.weixin.qq.com/s/Ri2ap9_5EMzdfiBhSSL_MQ) | 2024-05-20 | [苏洋](https://github.com/soulteary) |
1085
- | [使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模��,并使用vllm优化加速,显存占用42G,速度18 words-s](https://blog.csdn.net/freewebsys/article/details/134698597?ops_request_misc=%7B%22request%5Fid%22%3A%22171636168816800227489911%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636168816800227489911&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-17-134698597-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-05-20 | [fly-iot](https://gitee.com/fly-iot) |
1086
- | [Yi-VL 最佳实践](https://modelscope.cn/docs/yi-vl最佳实践) | 2024-05-20 | [ModelScope](https://github.com/modelscope) |
1087
- | [一键运行零一万物新鲜出炉Yi-1.5-9B-Chat大模型](https://mp.weixin.qq.com/s/ntMs2G_XdWeM3I6RUOBJrA) | 2024-05-13 | [Second State](https://github.com/second-state) |
1088
- | [零一万物开源Yi-1.5系列大模型](https://mp.weixin.qq.com/s/d-ogq4hcFbsuL348ExJxpA) | 2024-05-13 | [刘聪](https://github.com/liucongg) |
1089
- | [零一万物Yi-1.5系列模型发布并开源! 34B-9B-6B 多尺寸,魔搭社区推理微调最佳实践教程来啦!](https://mp.weixin.qq.com/s/3wD-0dCgXB646r720o8JAg) | 2024-05-13 | [ModelScope](https://github.com/modelscope) |
1090
- | [Yi-34B 本地部署简单测试](https://blog.csdn.net/arkohut/article/details/135331469?ops_request_misc=%7B%22request%5Fid%22%3A%22171636390616800185813639%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636390616800185813639&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-10-135331469-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-05-13 | [漆妮妮](https://space.bilibili.com/1262370256) |
1091
- | [驾辰龙跨Llama持Wasm,玩转Yi模型迎新春过大年(上)](https://blog.csdn.net/weixin_53443275/article/details/136091398?ops_request_misc=%7B%22request%5Fid%22%3A%22171636390616800185813639%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636390616800185813639&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-5-136091398-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-05-13 | [Words worth](https://blog.csdn.net/weixin_53443275?type=blog) |
1092
- | [驾辰龙跨Llama持Wasm,玩转Yi模型迎新春过大年(下篇)](https://blog.csdn.net/weixin_53443275/article/details/136096309) | 2024-05-13 | [Words worth](https://blog.csdn.net/weixin_53443275?type=blog) |
1093
- | [Ollama新增两个命令,开始支持零一万物Yi-1.5系列模型](https://mp.weixin.qq.com/s/bBgzGJvUqIohodcy9U-pFw) | 2024-05-13 | AI工程师笔记 |
1094
- | [使用零一万物 200K 模型和 Dify 快速搭建模型应用](https://zhuanlan.zhihu.com/p/686774859) | 2024-05-13 | [苏洋](https://github.com/soulteary) |
1095
- | [(持更) 零一万物模型折腾笔记:社区 Yi-34B 微调模型使用](https://zhuanlan.zhihu.com/p/671549900) | 2024-05-13 | [苏洋](https://github.com/soulteary) |
1096
- | [Python+ERNIE-4.0-8K-Yi-34B-Chat大模型初探](https://mp.weixin.qq.com/s/WaygSfn5T8ZPB1mPdGADEQ) | 2024-05-11 | 江湖评谈 |
1097
- | [技术布道 Vue及Python调用零一万物模型和Prompt模板(通过百度千帆大模型平台)](https://blog.csdn.net/ucloud2012/article/details/137187469) | 2024-05-11 | [MumuLab](https://blog.csdn.net/ucloud2012?type=blog) |
1098
- | [多模态大模型Yi-VL-plus体验 效果很棒](https://zhuanlan.zhihu.com/p/694736111) | 2024-04-27 | [大家好我是爱因](https://www.zhihu.com/people/iamein) |
1099
- | [使用autodl服务器,两个3090显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度23 words-s](https://blog.csdn.net/freewebsys/article/details/134725765?ops_request_misc=%7B%22request%5Fid%22%3A%22171636356716800211598950%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636356716800211598950&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-9-134725765-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-04-27 | [fly-iot](https://gitee.com/fly-iot) |
1100
- | [Getting Started with Yi-1.5-9B-Chat](https://www.secondstate.io/articles/yi-1.5-9b-chat/) | 2024-04-27 | [Second State](https://github.com/second-state) |
1101
- | [基于零一万物yi-vl-plus大模型简单几步就能批量生成Anki图片笔记](https://mp.weixin.qq.com/s/_ea6g0pzzeO4WyYtuWycWQ) | 2024-04-24 | [正经人王同学](https://github.com/zjrwtx) |
1102
- | [【AI开发:语言】一、Yi-34B超大模型本地部署CPU和GPU版](https://blog.csdn.net/alarey/article/details/137769471?ops_request_misc=%7B%22request%5Fid%22%3A%22171636168816800227489911%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636168816800227489911&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-16-137769471-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-04-21 | [My的梦想已实现](https://blog.csdn.net/alarey?type=blog) |
1103
- | [【Yi-34B-Chat-Int4】使用4个2080Ti显卡11G版本,运行Yi-34B模型,5年前老显卡是支持的,可以正常运行,速度 21 words-s,vllm要求算力在7以上的显卡就可以](https://blog.csdn.net/freewebsys/article/details/134754086) | 2024-03-22 | [fly-iot](https://gitee.com/fly-iot) |
1104
- | [零一万物大模型部署+微调总结](https://blog.csdn.net/v_wus/article/details/135704126?ops_request_misc=%7B%22request%5Fid%22%3A%22171636168816800227489911%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636168816800227489911&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-18-135704126-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-03-22 | [v_wus](https://blog.csdn.net/v_wus?type=blog) |
1105
- | [零一万物Yi大模型vllm推理时Yi-34B或Yi-6bchat重复输出的解决方案](https://blog.csdn.net/qq_39667443/article/details/136028776?ops_request_misc=%7B%22request%5Fid%22%3A%22171636168816800227489911%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636168816800227489911&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-6-136028776-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-03-02 | [郝铠锋](https://blog.csdn.net/qq_39667443?type=blog) |
1106
- | [Yi-34B微调训练](https://blog.csdn.net/lsjlnd/article/details/135336984?ops_request_misc=%7B%22request%5Fid%22%3A%22171636343416800188513953%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636343416800188513953&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-12-135336984-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-03-02 | [lsjlnd](https://blog.csdn.net/lsjlnd?type=blog) |
1107
- | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
1108
- | [零一万物开源Yi-VL多模态大模型,魔搭社区推理&微调最佳实践来啦!](https://zhuanlan.zhihu.com/p/680098411) | 2024-01-26 | [ModelScope](https://github.com/modelscope) |
1109
- | [单卡 3 小时训练 Yi-6B 大模型 Agent:基于 Llama Factory 实战](https://zhuanlan.zhihu.com/p/678989191) | 2024-01-22 | [郑耀威](https://github.com/hiyouga) |
1110
- | [零一科技Yi-34B Chat大模型环境搭建&推理](https://blog.csdn.net/zzq1989_/article/details/135597181?ops_request_misc=%7B%22request%5Fid%22%3A%22171636168816800227489911%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636168816800227489911&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-8-135597181-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-01-15 | [要养家的程序员](https://blog.csdn.net/zzq1989_?type=blog) |
1111
- | [基于LLaMA Factory,单卡3小时训练专属大模型 Agent](https://blog.csdn.net/m0_59596990/article/details/135760285?ops_request_misc=%7B%22request%5Fid%22%3A%22171636343416800188513953%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636343416800188513953&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-10-135760285-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-01-15 | [机器学习社区](https://blog.csdn.net/m0_59596990?type=blog) |
1112
- | [双卡 3080ti 部署 Yi-34B 大模型 - Gradio + vLLM 踩坑全记录](https://blog.csdn.net/arkohut/article/details/135321242?ops_request_misc=%7B%22request%5Fid%22%3A%22171636168816800227489911%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636168816800227489911&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-10-135321242-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-01-02 | [漆妮妮](https://space.bilibili.com/1262370256) |
1113
- | [【大模型部署实践-3】3个能在3090上跑起来的4bits量化Chat模型(baichuan2-13b、InternLM-20b、Yi-34b)](https://blog.csdn.net/qq_40302568/article/details/135040985?ops_request_misc=%7B%22request%5Fid%22%3A%22171636168816800227489911%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636168816800227489911&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-30-135040985-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2024-01-02 | [aq_Seabiscuit](https://blog.csdn.net/qq_40302568?type=blog) |
1114
- | [只需 24G 显存,用 vllm 跑起�� Yi-34B 中英双语大模型](https://blog.csdn.net/arkohut/article/details/135274973) | 2023-12-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
1115
- | [零一万物模型官方 Yi-34B 模型本地离线运行部署使用笔记(物理机和docker两种部署方式),200K 超长文本内容,34B 干翻一众 70B 模型,打榜分数那么高,这模型到底行不行?](https://blog.csdn.net/u014374009/article/details/136327696) | 2023-12-28 | [代码讲故事](https://blog.csdn.net/u014374009?type=blog) |
1116
- | [LLM - 大模型速递之 Yi-34B 入门与 LoRA 微调](https://blog.csdn.net/BIT_666/article/details/134990402) | 2023-12-18 | [BIT_666](https://bitddd.blog.csdn.net/?type=blog) |
1117
- | [通过vllm框架进行大模型推理](https://blog.csdn.net/weixin_45920955/article/details/135300561?ops_request_misc=%7B%22request%5Fid%22%3A%22171636343416800188513953%22%2C%22scm%22%3A%2220140713.130102334.pc%5Fblog.%22%7D&request_id=171636343416800188513953&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-13-135300561-null-null.nonecase&utm_term=Yi大模型&spm=1018.2226.3001.4450) | 2023-12-18 | [土山炮](https://blog.csdn.net/weixin_45920955?type=blog) |
1118
- | [CPU 混合推理,非常见大模型量化方案:“二三五六” 位量化方案](https://zhuanlan.zhihu.com/p/671698216) | 2023-12-12 | [苏洋](https://github.com/soulteary) |
1119
- | [零一万物模型折腾笔记:官方 Yi-34B 模型基础使用](https://zhuanlan.zhihu.com/p/671387298) | 2023-12-10 | [苏洋](https://github.com/soulteary) |
1120
- | [Running Yi-34B-Chat locally using LlamaEdge](https://www.secondstate.io/articles/yi-34b/) | 2023-11-30 | [Second State](https://github.com/second-state) |
1121
- | [本地运行零一万物 34B 大模型,使用 Llama.cpp & 21G 显存](https://zhuanlan.zhihu.com/p/668921042) | 2023-11-26 | [苏洋](https://github.com/soulteary) |
1122
-
1123
- ##### GitHub Project
1124
-
1125
- | Deliverable | Date | Author |
1126
- | ------------------------------------------------------------ | ---------- | ------------------------------------------- |
1127
- | [yi-openai-proxy](https://github.com/soulteary/yi-openai-proxy) | 2024-05-11 | [苏洋](https://github.com/soulteary) |
1128
- | [基于零一万物 Yi 模型和 B 站构建大语言模型高质量训练数据集](https://github.com/zjrwtx/bilibiliQA_databuilder) | 2024-04-29 | [正经人王同学](https://github.com/zjrwtx) |
1129
- | [基于视频网站和零一万物大模型构建大语言模型高质量训练数据集](https://github.com/zjrwtx/VideoQA_databuilder) | 2024-04-25 | [正经人王同学](https://github.com/zjrwtx) |
1130
- | [基于零一万物yi-34b-chat-200k输入任意文章地址,点击按钮即可生成无广告或推广内容的简要笔记,并生成分享图给好友](https://github.com/zjrwtx/open_summary) | 2024-04-24 | [正经人王同学](https://github.com/zjrwtx) |
1131
- | [Food-GPT-Yi-model](https://github.com/ThisisHubert/FoodGPT-Yi-model) | 2024-04-21 | [Hubert S](https://github.com/ThisisHubert) |
1132
-
1133
- ##### Video tutorials
1134
-
1135
- | Deliverable | Date | Author |
1136
- | ------------------------------------------------------------ | ---------- | ------------------------------------------------------------ |
1137
- | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
1138
- | [只需 24G 显存,用 vllm 跑起来 Yi-34B 中英双语大模型](https://www.bilibili.com/video/BV17t4y1f7Ee/) | 2023-12-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
1139
- | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
1140
- | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
1141
- | [Yi-VL-34B 多模态大模型 - 用两张 A40 显卡跑起来](https://www.bilibili.com/video/BV1Q5411y7AG/) | 2024-01-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
1142
- | [4060Ti 16G显卡安装零一万物最新开源的Yi-1.5版大语言模型](https://www.bilibili.com/video/BV16i421X7Jx/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-05-14 | [titan909](https://space.bilibili.com/526393761) |
1143
- | [Yi-1.5: True Apache 2.0 Competitor to LLAMA-3](https://www.youtube.com/watch?v=KCDYrfWeTRc) | 2024-05-13 | [Prompt Engineering](https://www.youtube.com/@engineerprompt) |
1144
- | [Install Yi-1.5 Model Locally - Beats Llama 3 in Various Benchmarks](https://www.youtube.com/watch?v=Ba-G7Il0UkA) | 2024-05-13 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
1145
- | [how to install Ollama and run Yi 6B](https://www.youtube.com/watch?v=4Jnar7OUHqQ) | 2024-05-13 | [Ridaa Davids](https://www.youtube.com/@quantanovabusiness) |
1146
- | [地表最强混合智能AI助手:llama3_70B+Yi_34B+Qwen1.5_110B](https://www.bilibili.com/video/BV1Xm411C7V1/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-05-04 | [朱扎特](https://space.bilibili.com/494512200?spm_id_from=333.788.0.0) |
1147
- | [ChatDoc学术论文辅助--基于Yi-34B和langchain进行PDF知识库问答](https://www.bilibili.com/video/BV11i421C7B5/?spm_id_from=333.999.0.0&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-05-03 | [朱扎特](https://space.bilibili.com/494512200?spm_id_from=333.788.0.0) |
1148
- | [基于Yi-34B的领域知识问答项目演示](https://www.bilibili.com/video/BV1zZ42177ZA/?spm_id_from=333.999.0.0&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-05-02 | [朱扎特](https://space.bilibili.com/494512200?spm_id_from=333.788.0.0) |
1149
- | [使用RTX4090+GaLore算法 全参微调Yi-6B大模型](https://www.bilibili.com/video/BV1ax4y1U7Ep/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-03-24 | [小工蚂创始人](https://space.bilibili.com/478674499?spm_id_from=333.788.0.0) |
1150
- | [无内容审查NSFW大语言模型Yi-34B-Chat蒸馏版测试,RolePlay,《天龙八部》马夫人康敏,本地GPU,CPU运行](https://www.youtube.com/watch?v=VL-W0TnLCns) | 2024-03-20 | [刘悦的技术博客](https://v3u.cn/) |
1151
- | [无内容审查NSFW大语言模型整合包,Yi-34B-Chat,本地CPU运行,角色扮演潘金莲](https://www.youtube.com/watch?v=rBvbgwz3oHM) | 2024-03-16 | [刘悦的技术博客](https://v3u.cn/) |
1152
- | [量化 Yi-34B-Chat 并在单卡 RTX 4090 使用 vLLM 部署](https://www.bilibili.com/video/BV1jx421y7xj/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-03-05 | [白鸽巢](https://space.bilibili.com/138938660?spm_id_from=333.788.0.0) |
1153
- | [Yi-VL-34B(5):使用3个3090显卡24G版本,运行Yi-VL-34B模型,支持命令行和web界面方式,理解图片的内容转换成文字](https://www.bilibili.com/video/BV1BB421z7oA/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-02-27 | [fly-iot](https://gitee.com/fly-iot) |
1154
- | [Win环境KoboldCpp本地部署大语言模型进行各种角色扮演游戏](https://www.bilibili.com/video/BV14J4m1e77f/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-02-25 | [魚蟲蟲](https://space.bilibili.com/431981179?spm_id_from=333.788.0.0) |
1155
- | [无需显卡本地部署Yi-34B-Chat进行角色扮演游戏 P2](https://www.bilibili.com/video/BV19v421677y/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-02-23 | [魚蟲蟲](https://space.bilibili.com/431981179?spm_id_from=333.788.0.0) |
1156
- | [【wails】(2):使用go-llama.cpp 运行 yi-01-6b大模型,使用本地CPU运行,速度还可以,等待下一版本更新](https://www.bilibili.com/video/BV194421F7Fy/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-02-20 | [fly-iot](https://gitee.com/fly-iot) |
1157
- | [【xinference】(6):在autodl上,使用xinference部署yi-vl-chat和qwen-vl-chat模型,可以使用openai调用成功](https://www.bilibili.com/video/BV19Z421z7cv/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-02-06 | [fly-iot](https://gitee.com/fly-iot) |
1158
- | [无需显卡本地部署Yi-34B-Chat进行角色扮演游戏 P1](https://www.bilibili.com/video/BV1tU421o7Co/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-02-05 | [魚蟲蟲](https://space.bilibili.com/431981179?spm_id_from=333.788.0.0) |
1159
- | [2080Ti部署YI-34B大模型 xinference-oneapi-fastGPT本地知识库使用指南](https://www.bilibili.com/video/BV1hC411z7xu/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-01-30 | [小饭护法要转码](https://space.bilibili.com/39486865?spm_id_from=333.788.0.0) |
1160
- | [Best Story Writing AI Model - Install Yi 6B 200K Locally on Windows](https://www.youtube.com/watch?v=cZs2jRtl0bs) | 2024-01-22 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
1161
- | [Mac 本地运行大语言模型方法与常见问题指南(Yi 34B 模型+32 GB 内存测试)](https://www.bilibili.com/video/BV1VT4y1b7Th/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-01-21 | [小吴苹果机器人](https://space.bilibili.com/1732749682?spm_id_from=333.788.0.0) |
1162
- | [【Dify知识库】(11):Dify0.4.9改造支持MySQL,成功接入yi-6b 做对话,本地使用fastchat启动,占8G显存,完成知识库配置](https://www.bilibili.com/video/BV1ia4y1y7JH/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-01-21 | [fly-iot](https://gitee.com/fly-iot) |
1163
- | [这位LLM先生有点暴躁,用的是YI-6B的某个量化版,#LLM #大语言模型 #暴躁老哥](https://www.youtube.com/watch?v=eahXJrdtQuc) | 2024-01-20 | [晓漫吧](https://www.youtube.com/@xiaomanba) |
1164
- | [大模型推理 NvLink 桥接器有用吗|双卡 A6000 测试一下](https://www.bilibili.com/video/BV1AW4y1w7DC/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-01-17 | [漆妮妮](https://space.bilibili.com/1262370256) |
1165
- | [大模型推理 A40 vs A6000 谁更强 - 对比 Yi-34B 的单、双卡推理性能](https://www.bilibili.com/video/BV1aK4y1z7GF/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-01-15 | [漆妮妮](https://space.bilibili.com/1262370256) |
1166
- | [C-Eval 大语言模型评测基准- 用 LM Evaluation Harness + vLLM 跑起来](https://www.bilibili.com/video/BV1Yw411g7ZL/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-01-11 | [漆妮妮](https://space.bilibili.com/1262370256) |
1167
- | [双显卡部署 Yi-34B 大模型 - vLLM + Gradio 踩坑记录](https://www.bilibili.com/video/BV1p94y1c7ak/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2024-01-01 | [漆妮妮](https://space.bilibili.com/1262370256) |
1168
- | [手把手教学!使用 vLLM 快速部署 Yi-34B-Chat](https://www.bilibili.com/video/BV1ew41157Mk/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2023-12-26 | [白鸽巢](https://space.bilibili.com/138938660?spm_id_from=333.788.0.0) |
1169
- | [如何训练企业自己的大语言模型?Yi-6B LORA微调演示 #小工蚁](https://www.bilibili.com/video/BV1uc41117zz/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2023-12-21 | [小工蚂创始人](https://space.bilibili.com/478674499?spm_id_from=333.788.0.0) |
1170
- | [Yi-34B(4):使用4个2080Ti显卡11G版本,运行Yi-34B模型,5年前老显卡是支持的,可以正常运行,速度 21 words/s](https://www.bilibili.com/video/BV1nj41157L3/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2023-12-02 | [fly-iot](https://gitee.com/fly-iot) |
1171
- | [使用autodl服务器,RTX 3090 * 3 显卡上运行, Yi-34B-Chat模型,显存占用60G](https://www.bilibili.com/video/BV1BM411R7ae/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2023-12-01 | [fly-iot](https://gitee.com/fly-iot) |
1172
- | [使用autodl服务器,两个3090显卡上运行, Yi-34B-Chat-int4模型,用vllm优化,增加 --num-gpu 2,速度23 words/s](https://www.bilibili.com/video/BV1Hu4y1L7BH/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2023-12-01 | [fly-iot](https://gitee.com/fly-iot) |
1173
- | [Yi大模型一键本地部署 技术小白玩转AI](https://www.bilibili.com/video/BV16H4y117md/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2023-12-01 | [技术小白玩转AI](https://space.bilibili.com/3546586137234288?spm_id_from=333.788.0.0) |
1174
- | [01.AI's Yi-6B: Overview and Fine-Tuning](https://www.youtube.com/watch?v=mye-UOkAliQ) | 2023-11-28 | [AI Makerspace](https://www.youtube.com/@AI-Makerspace) |
1175
- | [Yi 34B Chat LLM outperforms Llama 70B](https://www.youtube.com/watch?v=RYtrF-R5jDc) | 2023-11-27 | [DLExplorer](https://www.youtube.com/@DLExplorers-lg7dt) |
1176
- | [How to run open source models on mac Yi 34b on m3 Max](https://www.youtube.com/watch?v=GAo-dopkgjI) | 2023-11-26 | [TECHNO PREMIUM](https://www.youtube.com/@technopremium91) |
1177
- | [Yi-34B - 200K - The BEST & NEW CONTEXT WINDOW KING ](https://www.youtube.com/watch?v=7WBojwwv5Qo) | 2023-11-24 | [Prompt Engineering](https://www.youtube.com/@engineerprompt) |
1178
- | [Yi 34B : The Rise of Powerful Mid-Sized Models - Base,200k & Chat](https://www.youtube.com/watch?v=bWCjwtu_tHs) | 2023-11-24 | [Sam Witteveen](https://www.youtube.com/@samwitteveenai) |
1179
- | [在IoT设备运行破解版李开复大模型dolphin-2.2-yi-34b(还可作为私有OpenAI API服务器)](https://www.bilibili.com/video/BV1SQ4y18744/?spm_id_from=333.337.search-card.all.click&vd_source=ab85f93e294a2f6be11db57c29c6d706) | 2023-11-15 | [Second State](https://github.com/second-state) |
1180
- | [Run dolphin-2.2-yi-34b on IoT Devices (Also works as a Private OpenAI API Server)](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-14 | [Second State](https://github.com/second-state) |
1181
- | [How to Install Yi 34B 200K Llamafied on Windows Laptop](https://www.youtube.com/watch?v=enoha4K4HkQ) | 2023-11-11 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
1182
 
1183
  </details>
1184
 
@@ -1197,7 +1040,7 @@ With all these resources at your fingertips, you're ready to start your exciting
1197
  - [Base model performance](#base-model-performance)
1198
  - [Yi-34B and Yi-34B-200K](#yi-34b-and-yi-34b-200k)
1199
  - [Yi-9B](#yi-9b)
1200
-
1201
  ## Ecosystem
1202
 
1203
  Yi has a comprehensive ecosystem, offering a range of tools, services, and models to enrich your experiences and maximize productivity.
@@ -1302,8 +1145,8 @@ For detailed capabilities of the Yi series model, see [Yi: Open Foundation Model
1302
 
1303
  ## Benchmarks
1304
 
1305
- - [Chat model performance](#chat-model-performance)
1306
- - [Base model performance](#base-model-performance)
1307
 
1308
  ### Chat model performance
1309
 
@@ -1350,19 +1193,19 @@ Yi-9B is almost the best among a range of similar-sized open-source models (incl
1350
 
1351
  - In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
1352
 
1353
- ![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
1354
 
1355
  - In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.
1356
 
1357
- ![Yi-9B benchmark - code](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_code.png?raw=true)
1358
 
1359
  - In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.
1360
 
1361
- ![Yi-9B benchmark - math](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_math.png?raw=true)
1362
 
1363
  - In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.
1364
 
1365
- ![Yi-9B benchmark - text](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_text.png?raw=true)
1366
 
1367
  <p align="right"> [
1368
  <a href="#top">Back to top ⬆️ </a> ]
@@ -1372,7 +1215,9 @@ Yi-9B is almost the best among a range of similar-sized open-source models (incl
1372
 
1373
  Everyone! 🙌 ✅
1374
 
1375
- The code and weights of the Yi series models are distributed under the [Apache 2.0 license](https://github.com/01-ai/Yi/blob/main/LICENSE), which means the Yi series models are free for personal usage, academic purposes, and commercial use.
 
 
1376
 
1377
  <p align="right"> [
1378
  <a href="#top">Back to top ⬆️ </a> ]
@@ -1407,13 +1252,10 @@ as well as any associated data security concerns.
1407
 
1408
  ### License
1409
 
1410
- The code and weights of the Yi-1.5 series models are distributed under the [Apache 2.0 license](https://github.com/01-ai/Yi/blob/main/LICENSE).
1411
-
1412
- If you create derivative works based on this model, please include the following attribution in your derivative works:
1413
-
1414
- This work is a derivative of [The Yi Series Model You Base On] by 01.AI, used under the Apache 2.0 License.
1415
 
1416
  <p align="right"> [
1417
  <a href="#top">Back to top ⬆️ </a> ]
1418
  </p>
1419
-
 
1
  ---
2
+ license: other
3
+ license_name: yi-license
4
+ license_link: LICENSE
5
  widget:
6
  - example_title: "Yi-34B-Chat"
7
  text: "hi"
 
31
  </a>
32
  </div>
33
 
34
+ <div style="display: inline-block;">
35
+ <a href="https://github.com/01-ai/Yi/blob/main/LICENSE">
36
+ <img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue">
37
+ </a>
38
+ </div>
39
+
40
+ <div style="display: inline-block;">
41
+ <a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
42
+ <img src="https://img.shields.io/badge/Model_License-Yi_License-lightblue">
43
+ </a>
44
+ </div>
45
+
46
  <div style="display: inline-block;">
47
  <a href="mailto:oss@01.ai">
48
  <img src="https://img.shields.io/badge/✉️-yi@01.ai-FFE01B">
 
60
  </p>
61
 
62
  <p align="center">
63
+ 👋 Join us 💬 <a href="https://github.com/01-ai/Yi/issues/43#issuecomment-1827285245" target="_blank"> WeChat (Chinese) </a>!
64
  </p>
65
 
 
 
 
66
 
 
 
 
 
 
 
 
67
  <!-- DO NOT REMOVE ME -->
68
 
69
  <hr>
 
76
  - [Models](#models)
77
  - [Chat models](#chat-models)
78
  - [Base models](#base-models)
79
+ - [Other info](#other-info)
80
  - [News](#news)
81
  - [How to use Yi?](#how-to-use-yi)
82
  - [Quick start](#quick-start)
 
89
  - [Fine-tuning](#fine-tuning)
90
  - [Quantization](#quantization)
91
  - [Deployment](#deployment)
 
92
  - [Learning hub](#learning-hub)
93
  - [Why Yi?](#why-yi)
94
  - [Ecosystem](#ecosystem)
 
122
  - 🙌 Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example,
123
 
124
  - Yi-34B-Chat model **landed in second place (following GPT-4 Turbo)**, outperforming other LLMs (such as GPT-4, Mixtral, Claude) on the AlpacaEval Leaderboard (based on data available up to January 2024).
125
+
126
  - Yi-34B model **ranked first among all existing open-source models** (such as Falcon-180B, Llama-70B, Claude) in **both English and Chinese** on various benchmarks, including Hugging Face Open LLM Leaderboard (pre-trained) and C-Eval (based on data available up to November 2023).
127
 
128
  - 🙏 (Credits to Llama) Thanks to the Transformer and Llama open-source communities, as they reduce the efforts required to build from scratch and enable the utilization of the same tools within the AI ecosystem.
129
 
130
  <details style="display: inline;"><summary> If you're interested in Yi's adoption of Llama architecture and license usage policy, see <span style="color: green;">Yi's relation with Llama.</span> ⬇️</summary> <ul> <br>
131
 
 
132
  > 💡 TL;DR
133
  >
134
  > The Yi series models adopt the same model architecture as Llama but are **NOT** derivatives of Llama.
 
153
 
154
  ## News
155
 
156
+ <details open>
 
 
 
 
 
 
 
 
 
 
 
 
157
  <summary>🎯 <b>2024-03-08</b>: <a href="https://arxiv.org/abs/2403.04652">Yi Tech Report</a> is published! </summary>
158
  </details>
159
 
 
232
 
233
  ### Chat models
234
 
235
+ | Model | Download
236
+ |---|---
237
+ Yi-34B-Chat | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat/summary)
238
+ Yi-34B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-4bits/summary)
239
+ Yi-34B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-8bits) [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-8bits/summary)
240
+ Yi-6B-Chat| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat/summary)
241
+ Yi-6B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-4bits/summary)
242
+ Yi-6B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-8bits/summary)
243
+
244
 
245
  <sub><sup> - 4-bit series models are quantized by AWQ. <br> - 8-bit series models are quantized by GPTQ <br> - All quantized models have a low barrier to use since they can be deployed on consumer-grade GPUs (e.g., 3090, 4090). </sup></sub>
246
 
247
  ### Base models
248
 
249
+ | Model | Download |
250
  |---|---|
251
+ Yi-34B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B/summary)
252
+ Yi-34B-200K|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-200K/summary)
253
+ Yi-9B|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-9B)
254
+ Yi-9B-200K | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-9B-200K)
255
+ Yi-6B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B/summary)
256
+ Yi-6B-200K | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-200K/summary)
257
 
258
  <sub><sup> - 200k is roughly equivalent to 400,000 Chinese characters. <br> - If you want to use the previous version of the Yi-34B-200K (released on Nov 5, 2023), run `git checkout 069cd341d60f4ce4b07ec394e82b79e94f656cf` to download the weight. </sup></sub>
259
 
 
261
 
262
  - For chat and base models
263
 
264
+ Model | Intro | Default context window | Pretrained tokens | Training Data Date
265
+ |---|---|---|---|---
266
+ 6B series models |They are suitable for personal and academic use. | 4K | 3T | Up to June 2023
267
+ 9B model| It is the best at coding and math in the Yi series models.|4K | Yi-9B is continuously trained based on Yi-6B, using 0.8T tokens. | Up to June 2023
268
+ 34B series models | They are suitable for personal, academic, and commercial (particularly for small and medium-sized enterprises) purposes. It's a cost-effective solution that's affordable and equipped with emergent ability.|4K | 3T | Up to June 2023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
 
270
  - For chat models
271
 
 
278
  <li>Non-determinism in re-generation: When attempting to regenerate or sample responses, inconsistencies in the outcomes may occur. The increased diversity can lead to varying results even under similar input conditions.</li>
279
  <li>Cumulative Error: This occurs when errors in the model's responses compound over time. As the model generates more diverse responses, the likelihood of small inaccuracies building up into larger errors increases, especially in complex tasks like extended reasoning, mathematical problem-solving, etc.</li>
280
  <li>To achieve more coherent and consistent responses, it is advisable to adjust generation configuration parameters such as temperature, top_p, or top_k. These adjustments can help in the balance between creativity and coherence in the model's outputs.</li>
281
+ </ul>
282
+ </details>
283
 
284
  <p align="right"> [
285
  <a href="#top">Back to top ⬆️ </a> ]
 
298
  - [Fine-tuning](#fine-tuning)
299
  - [Quantization](#quantization)
300
  - [Deployment](#deployment)
 
301
  - [Learning hub](#learning-hub)
302
 
303
  ## Quick start
304
 
305
+ Getting up and running with Yi models is simple with multiple choices available.
306
 
307
  ### Choose your path
308
 
 
337
  ##### 🙋‍♀️ Run Yi in playground
338
 
339
  If you want to chat with Yi with more customizable options (e.g., system prompt, temperature, repetition penalty, etc.), you can try one of the following options:
340
+
341
  - [Yi-34B-Chat-Playground](https://platform.lingyiwanwu.com/prompt/playground) (Yi official)
342
  - Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
343
 
 
362
  This tutorial guides you through every step of running **Yi-34B-Chat locally on an A800 (80G)** and then performing inference.
363
 
364
  #### Step 0: Prerequisites
365
+
366
  - Make sure Python 3.10 or a later version is installed.
367
 
368
  - If you want to run other Yi models, see [software and hardware requirements](#deployment).
 
464
 
465
  ```bash
466
  from transformers import AutoModelForCausalLM, AutoTokenizer
467
+
468
  MODEL_DIR = "01-ai/Yi-9B"
469
  model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, torch_dtype="auto")
470
  tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=False)
471
+
472
  input_text = "# write the quick sort algorithm"
473
  inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
474
  outputs = model.generate(**inputs, max_length=256)
 
487
  middle = [x for x in arr if x == pivot]
488
  right = [x for x in arr if x > pivot]
489
  return quick_sort(left) + middle + quick_sort(right)
490
+
491
  # test the quick sort algorithm
492
  print(quick_sort([3, 6, 8, 10, 1, 2, 1]))
493
  ```
494
 
495
+ <p align="right"> [
496
+ <a href="#top">Back to top ⬆️ </a> ]
497
+ </p>
 
498
 
499
  ### Quick start - Docker
500
  <details>
 
512
 
513
  <h4>Step 2: Perform inference</h4>
514
  <p>You can perform inference with Yi chat or base models as below.</p>
515
+
516
  <h5>Perform inference with Yi chat model</h5>
517
  <p>The steps are similar to <a href="#perform-inference-with-yi-chat-model">pip - Perform inference with Yi chat model</a>.</p>
518
  <p><strong>Note</strong> that the only difference is to set <code>model_path = '&lt;your-model-mount-path&gt;'</code> instead of <code>model_path = '&lt;your-model-path&gt;'</code>.</p>
 
537
 
538
 
539
  ### Quick start - llama.cpp
 
540
  <details>
541
  <summary> Run Yi-chat-6B-2bits locally with llama.cpp: a step-by-step guide. ⬇️</summary>
542
+ <br>This tutorial guides you through every step of running a quantized model (<a href="https://huggingface.co/XeIaso/yi-chat-6B-GGUF/tree/main">Yi-chat-6B-2bits</a>) locally and then performing inference.</p>
543
 
544
  - [Step 0: Prerequisites](#step-0-prerequisites)
545
  - [Step 1: Download llama.cpp](#step-1-download-llamacpp)
 
633
 
634
  ```bash
635
  ...
636
+
637
  llama_new_context_with_model: n_ctx = 2048
638
  llama_new_context_with_model: freq_base = 5000000.0
639
  llama_new_context_with_model: freq_scale = 1
 
656
  ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 156.02 MiB, ( 2785.45 / 10922.67)
657
  Available slots:
658
  -> Slot 0 - max context: 2048
659
+
660
  llama server listening at http://0.0.0.0:8080
661
  ```
662
 
 
758
 
759
  #### Hardware Setup
760
 
761
+ For the Yi-6B model, a node with 4 GPUs, each has GPU mem larger than 60GB is recommended.
762
 
763
+ For the Yi-34B model, because the usage of zero-offload technique takes a lot CPU memory, please be careful to limit the GPU numbers in 34B finetune training. Please use CUDA_VISIBLE_DEVICES to limit the GPU number (as shown in scripts/run_sft_Yi_34b.sh).
764
 
765
+ A typical hardware setup for finetuning 34B model is a node with 8GPUS (limit to 4 in running by CUDA_VISIBLE_DEVICES=0,1,2,3), each has GPU mem larger than 80GB, with total CPU mem larger than 900GB.
766
 
767
  #### Quick Start
768
 
 
845
  --trust_remote_code
846
  ```
847
 
848
+ <details style="display: inline;"><summary>For a more detailed explanation, see the explanations below. ⬇️</summary> <ul>
849
 
850
  #### GPT-Q quantization
851
 
852
+ [GPT-Q](https://github.com/IST-DASLab/gptq) is a PTQ(Post-Training Quantization)
853
+ method. It's memory saving and provides potential speedups while retaining the accuracy
854
  of the model.
855
 
856
  Yi models can be GPT-Q quantized without a lot of efforts.
 
870
  --output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
871
  ```
872
 
873
+
874
  ##### Run Quantized Model
875
 
876
  You can run a quantized model using the `eval_quantized_model.py`:
 
882
  </details>
883
 
884
  #### AWQ
 
885
  ```bash
886
  python quantization/awq/quant_autoawq.py \
887
  --model /base_model \
 
896
  --model /quantized_model \
897
  --trust_remote_code
898
  ```
899
+ <details style="display: inline;"><summary>For detailed explanations, see the explanations below. ⬇️</summary> <ul>
900
 
901
  #### AWQ quantization
902
 
903
+ [AWQ](https://github.com/mit-han-lab/llm-awq) is a PTQ(Post-Training Quantization)
904
  method. It's an efficient and accurate low-bit weight quantization (INT3/4) for LLMs.
905
 
906
  Yi models can be AWQ quantized without a lot of efforts.
 
985
  <a href="#top">Back to top ⬆️ </a> ]
986
  </p>
987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988
  ### Learning hub
989
 
990
  <details>
991
  <summary> If you want to learn Yi, you can find a wealth of helpful educational resources here. ⬇️</summary>
992
  <br>
993
+
994
  Welcome to the Yi learning hub!
995
 
996
  Whether you're a seasoned developer or a newcomer, you can find a wealth of helpful educational resources to enhance your understanding and skills with Yi models, including insightful blog posts, comprehensive video tutorials, hands-on guides, and more.
 
1002
  With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
1003
 
1004
  #### Tutorials
1005
+ ##### English tutorials
1006
+ | Type | Deliverable | Date | Author |
1007
+ |-------------|--------------------------------------------------------|----------------|----------------|
1008
+ | Video | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
1009
+ | Blog | [Running Yi-34B-Chat locally using LlamaEdge](https://www.secondstate.io/articles/yi-34b/) | 2023-11-30 | [Second State](https://github.com/second-state) |
1010
+ | Video | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
1011
+ | Video | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
1012
+
1013
+
1014
+ ##### Chinese tutorials
1015
+ | Type | Deliverable | Date | Author |
1016
+ |-------------|--------------------------------------------------------|----------------|----------------|
1017
+ | Blog | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
1018
+ | Blog | [本地运行零一万物 34B 大模型,使用 Llama.cpp & 21G 显存](https://zhuanlan.zhihu.com/p/668921042) | 2023-11-26 | [苏洋](https://github.com/soulteary) |
1019
+ | Blog | [零一万物模型折腾笔记:官方 Yi-34B 模型基础使用](https://zhuanlan.zhihu.com/p/671387298) | 2023-12-10 | [苏洋](https://github.com/soulteary) |
1020
+ | Blog | [CPU 混合推理,非常见大模型量化方案:“二三五六” 位量化方案](https://zhuanlan.zhihu.com/p/671698216) | 2023-12-12 | [苏洋](https://github.com/soulteary) |
1021
+ | Blog | [单卡 3 小时训练 Yi-6B 大模型 Agent:基于 Llama Factory 实战](https://zhuanlan.zhihu.com/p/678989191) | 2024-01-22 | [郑耀威](https://github.com/hiyouga) |
1022
+ | Blog | [零一万物开源Yi-VL多模态大模型,魔搭社区推理&微调最佳实践来啦!](https://zhuanlan.zhihu.com/p/680098411) | 2024-01-26 | [ModelScope](https://github.com/modelscope) |
1023
+ | Video | [只需 24G 显存,用 vllm 跑起来 Yi-34B 中英双语大模型](https://www.bilibili.com/video/BV17t4y1f7Ee/) | 2023-12-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
1024
+ | Video | [Yi-VL-34B 多模态大模型 - 用两张 A40 显卡跑起来](https://www.bilibili.com/video/BV1Q5411y7AG/) | 2023-01-28 | [漆妮妮](https://space.bilibili.com/1262370256) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025
 
1026
  </details>
1027
 
 
1040
  - [Base model performance](#base-model-performance)
1041
  - [Yi-34B and Yi-34B-200K](#yi-34b-and-yi-34b-200k)
1042
  - [Yi-9B](#yi-9b)
1043
+
1044
  ## Ecosystem
1045
 
1046
  Yi has a comprehensive ecosystem, offering a range of tools, services, and models to enrich your experiences and maximize productivity.
 
1145
 
1146
  ## Benchmarks
1147
 
1148
+ - [Chat model performance](#-chat-model-performance)
1149
+ - [Base model performance](#-base-model-performance)
1150
 
1151
  ### Chat model performance
1152
 
 
1193
 
1194
  - In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
1195
 
1196
+ ![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
1197
 
1198
  - In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.
1199
 
1200
+ ![Yi-9B benchmark - code](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_code.png?raw=true)
1201
 
1202
  - In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.
1203
 
1204
+ ![Yi-9B benchmark - math](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_math.png?raw=true)
1205
 
1206
  - In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.
1207
 
1208
+ ![Yi-9B benchmark - text](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_text.png?raw=true)
1209
 
1210
  <p align="right"> [
1211
  <a href="#top">Back to top ⬆️ </a> ]
 
1215
 
1216
  Everyone! 🙌 ✅
1217
 
1218
+ - The Yi series models are free for personal usage, academic purposes, and commercial use. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
1219
+
1220
+ - For free commercial use, you only need to [complete this form](https://www.lingyiwanwu.com/yi-license) to get a Yi Model Commercial License.
1221
 
1222
  <p align="right"> [
1223
  <a href="#top">Back to top ⬆️ </a> ]
 
1252
 
1253
  ### License
1254
 
1255
+ The source code in this repo is licensed under the [Apache 2.0
1256
+ license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models are fully open for academic research and free for commercial use, with automatic permission granted upon application. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
1257
+ For free commercial use, you only need to send an email to [get official commercial permission](https://www.lingyiwanwu.com/yi-license).
 
 
1258
 
1259
  <p align="right"> [
1260
  <a href="#top">Back to top ⬆️ </a> ]
1261
  </p>
 
images/initail.png DELETED
Binary file (83.4 kB)
 
images/v20240318.png DELETED
Binary file (82.7 kB)
 
images/v20240321.png DELETED
Binary file (84.8 kB)
 
md5 CHANGED
@@ -1,5 +1,5 @@
1
- ea4c0821c336830245134cd7d0e434c1 model-00001-of-00004.safetensors
2
- 54cc12ebbc4588f73938a335b4d209e5 model-00002-of-00004.safetensors
3
- b3e58b8607b977476ee0ad7d1817eee5 model-00003-of-00004.safetensors
4
- f4162fd64b5f47758ffdd652d2eea742 model-00004-of-00004.safetensors
5
  291724ef50f729e45d68f474a7755bbc tokenizer.model
 
1
+ dbdb0057bd6a45b21ac8a708b11b5ca1 model-00001-of-00004.safetensors
2
+ 8c21c8c0ec4642a5c957de7141c9dd6b model-00002-of-00004.safetensors
3
+ f30b358297910e8020ff9e19ac134a3e model-00003-of-00004.safetensors
4
+ f5f61561920649a6d2027b6a3956d3ec model-00004-of-00004.safetensors
5
  291724ef50f729e45d68f474a7755bbc tokenizer.model
model-00001-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a8e111c2abf7439e96a405abc7d5d16cd810ac0c2ab6e753e3ac4c347594e6bb
3
  size 4932711424
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:818de78b599ddb5c08c7fc9fa7752f6b976775bfcbc8f70babcb7e72ccc70b88
3
  size 4932711424
model-00002-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e404ae15a3f6c0fb0f23fe096aa3b839c836b8ea7cf1bc71ab62e82918165c6c
3
  size 4976802816
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fd639f136ef2891625249e229f1195bea32a37c1aca6c0e1c4e9a7291d2ba75
3
  size 4976802816
model-00003-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c735370383b7fd936e15cbcfc05ea58327c306bcafed4794de8a78219e80322e
3
  size 4968397360
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b52b1668f77e1219b6dee19a502a369abab33bf2746fd9e8c737f1740ad15fba
3
  size 4968397360
model-00004-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:273253da7c24a105ec95c53ab4acebde6fc1c287e8782904a58fef766594e4bd
3
  size 2780953384
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9805a8c571c22dd4f6c118bab0d2119740fbfedc29dc0286adb52af5c60126a1
3
  size 2780953384
tokenizer.json CHANGED
@@ -29,2067 +29,6 @@
29
  "rstrip": false,
30
  "normalized": false,
31
  "special": true
32
- },
33
- {
34
- "id": 6,
35
- "content": "<|im_start|>",
36
- "single_word": false,
37
- "lstrip": false,
38
- "rstrip": false,
39
- "normalized": false,
40
- "special": true
41
- },
42
- {
43
- "id": 7,
44
- "content": "<|im_end|>",
45
- "single_word": false,
46
- "lstrip": false,
47
- "rstrip": false,
48
- "normalized": false,
49
- "special": true
50
- },
51
- {
52
- "id": 8,
53
- "content": "<|im_sep|>",
54
- "single_word": false,
55
- "lstrip": false,
56
- "rstrip": false,
57
- "normalized": false,
58
- "special": true
59
- },
60
- {
61
- "id": 14,
62
- "content": "<fim_prefix>",
63
- "single_word": false,
64
- "lstrip": false,
65
- "rstrip": false,
66
- "normalized": false,
67
- "special": true
68
- },
69
- {
70
- "id": 15,
71
- "content": "<fim_middle>",
72
- "single_word": false,
73
- "lstrip": false,
74
- "rstrip": false,
75
- "normalized": false,
76
- "special": true
77
- },
78
- {
79
- "id": 16,
80
- "content": "<fim_suffix>",
81
- "single_word": false,
82
- "lstrip": false,
83
- "rstrip": false,
84
- "normalized": false,
85
- "special": true
86
- },
87
- {
88
- "id": 16,
89
- "content": "<fim_suffix>",
90
- "single_word": false,
91
- "lstrip": false,
92
- "rstrip": false,
93
- "normalized": false,
94
- "special": true
95
- },
96
- {
97
- "id": 17,
98
- "content": "<fim_pad>",
99
- "single_word": false,
100
- "lstrip": false,
101
- "rstrip": false,
102
- "normalized": false,
103
- "special": true
104
- },
105
- {
106
- "id": 18,
107
- "content": "<filename>",
108
- "single_word": false,
109
- "lstrip": false,
110
- "rstrip": false,
111
- "normalized": false,
112
- "special": true
113
- },
114
- {
115
- "id": 19,
116
- "content": "<gh_stars>",
117
- "single_word": false,
118
- "lstrip": false,
119
- "rstrip": false,
120
- "normalized": false,
121
- "special": true
122
- },
123
- {
124
- "id": 20,
125
- "content": "<issue_start>",
126
- "single_word": false,
127
- "lstrip": false,
128
- "rstrip": false,
129
- "normalized": false,
130
- "special": true
131
- },
132
- {
133
- "id": 21,
134
- "content": "<issue_comment>",
135
- "single_word": false,
136
- "lstrip": false,
137
- "rstrip": false,
138
- "normalized": false,
139
- "special": true
140
- },
141
- {
142
- "id": 22,
143
- "content": "<issue_closed>",
144
- "single_word": false,
145
- "lstrip": false,
146
- "rstrip": false,
147
- "normalized": false,
148
- "special": true
149
- },
150
- {
151
- "id": 23,
152
- "content": "<jupyter_start>",
153
- "single_word": false,
154
- "lstrip": false,
155
- "rstrip": false,
156
- "normalized": false,
157
- "special": true
158
- },
159
- {
160
- "id": 24,
161
- "content": "<jupyter_text>",
162
- "single_word": false,
163
- "lstrip": false,
164
- "rstrip": false,
165
- "normalized": false,
166
- "special": true
167
- },
168
- {
169
- "id": 25,
170
- "content": "<jupyter_code>",
171
- "single_word": false,
172
- "lstrip": false,
173
- "rstrip": false,
174
- "normalized": false,
175
- "special": true
176
- },
177
- {
178
- "id": 26,
179
- "content": "<jupyter_output>",
180
- "single_word": false,
181
- "lstrip": false,
182
- "rstrip": false,
183
- "normalized": false,
184
- "special": true
185
- },
186
- {
187
- "id": 27,
188
- "content": "<empty_output>",
189
- "single_word": false,
190
- "lstrip": false,
191
- "rstrip": false,
192
- "normalized": false,
193
- "special": true
194
- },
195
- {
196
- "id": 28,
197
- "content": "<commit_before>",
198
- "single_word": false,
199
- "lstrip": false,
200
- "rstrip": false,
201
- "normalized": false,
202
- "special": true
203
- },
204
- {
205
- "id": 29,
206
- "content": "<commit_msg>",
207
- "single_word": false,
208
- "lstrip": false,
209
- "rstrip": false,
210
- "normalized": false,
211
- "special": true
212
- },
213
- {
214
- "id": 30,
215
- "content": "<commit_after>",
216
- "single_word": false,
217
- "lstrip": false,
218
- "rstrip": false,
219
- "normalized": false,
220
- "special": true
221
- },
222
- {
223
- "id": 31,
224
- "content": "<reponame>",
225
- "single_word": false,
226
- "lstrip": false,
227
- "rstrip": false,
228
- "normalized": false,
229
- "special": true
230
- },
231
- {
232
- "id": 32,
233
- "content": "<h1>",
234
- "single_word": false,
235
- "lstrip": false,
236
- "rstrip": false,
237
- "normalized": false,
238
- "special": true
239
- },
240
- {
241
- "id": 33,
242
- "content": "<h1/>",
243
- "single_word": false,
244
- "lstrip": false,
245
- "rstrip": false,
246
- "normalized": false,
247
- "special": true
248
- },
249
- {
250
- "id": 34,
251
- "content": "</h1>",
252
- "single_word": false,
253
- "lstrip": false,
254
- "rstrip": false,
255
- "normalized": false,
256
- "special": true
257
- },
258
- {
259
- "id": 35,
260
- "content": "<h2>",
261
- "single_word": false,
262
- "lstrip": false,
263
- "rstrip": false,
264
- "normalized": false,
265
- "special": true
266
- },
267
- {
268
- "id": 36,
269
- "content": "<h2/>",
270
- "single_word": false,
271
- "lstrip": false,
272
- "rstrip": false,
273
- "normalized": false,
274
- "special": true
275
- },
276
- {
277
- "id": 37,
278
- "content": "</h2>",
279
- "single_word": false,
280
- "lstrip": false,
281
- "rstrip": false,
282
- "normalized": false,
283
- "special": true
284
- },
285
- {
286
- "id": 38,
287
- "content": "<h3>",
288
- "single_word": false,
289
- "lstrip": false,
290
- "rstrip": false,
291
- "normalized": false,
292
- "special": true
293
- },
294
- {
295
- "id": 39,
296
- "content": "<h3/>",
297
- "single_word": false,
298
- "lstrip": false,
299
- "rstrip": false,
300
- "normalized": false,
301
- "special": true
302
- },
303
- {
304
- "id": 40,
305
- "content": "</h3>",
306
- "single_word": false,
307
- "lstrip": false,
308
- "rstrip": false,
309
- "normalized": false,
310
- "special": true
311
- },
312
- {
313
- "id": 41,
314
- "content": "<h4>",
315
- "single_word": false,
316
- "lstrip": false,
317
- "rstrip": false,
318
- "normalized": false,
319
- "special": true
320
- },
321
- {
322
- "id": 42,
323
- "content": "<h4/>",
324
- "single_word": false,
325
- "lstrip": false,
326
- "rstrip": false,
327
- "normalized": false,
328
- "special": true
329
- },
330
- {
331
- "id": 43,
332
- "content": "</h4>",
333
- "single_word": false,
334
- "lstrip": false,
335
- "rstrip": false,
336
- "normalized": false,
337
- "special": true
338
- },
339
- {
340
- "id": 44,
341
- "content": "<h5>",
342
- "single_word": false,
343
- "lstrip": false,
344
- "rstrip": false,
345
- "normalized": false,
346
- "special": true
347
- },
348
- {
349
- "id": 45,
350
- "content": "<h5/>",
351
- "single_word": false,
352
- "lstrip": false,
353
- "rstrip": false,
354
- "normalized": false,
355
- "special": true
356
- },
357
- {
358
- "id": 46,
359
- "content": "</h5>",
360
- "single_word": false,
361
- "lstrip": false,
362
- "rstrip": false,
363
- "normalized": false,
364
- "special": true
365
- },
366
- {
367
- "id": 47,
368
- "content": "<br>",
369
- "single_word": false,
370
- "lstrip": false,
371
- "rstrip": false,
372
- "normalized": false,
373
- "special": true
374
- },
375
- {
376
- "id": 48,
377
- "content": "<br/>",
378
- "single_word": false,
379
- "lstrip": false,
380
- "rstrip": false,
381
- "normalized": false,
382
- "special": true
383
- },
384
- {
385
- "id": 49,
386
- "content": "</br>",
387
- "single_word": false,
388
- "lstrip": false,
389
- "rstrip": false,
390
- "normalized": false,
391
- "special": true
392
- },
393
- {
394
- "id": 50,
395
- "content": "<strong>",
396
- "single_word": false,
397
- "lstrip": false,
398
- "rstrip": false,
399
- "normalized": false,
400
- "special": true
401
- },
402
- {
403
- "id": 51,
404
- "content": "<strong/>",
405
- "single_word": false,
406
- "lstrip": false,
407
- "rstrip": false,
408
- "normalized": false,
409
- "special": true
410
- },
411
- {
412
- "id": 52,
413
- "content": "</strong>",
414
- "single_word": false,
415
- "lstrip": false,
416
- "rstrip": false,
417
- "normalized": false,
418
- "special": true
419
- },
420
- {
421
- "id": 53,
422
- "content": "<p>",
423
- "single_word": false,
424
- "lstrip": false,
425
- "rstrip": false,
426
- "normalized": false,
427
- "special": true
428
- },
429
- {
430
- "id": 54,
431
- "content": "<p/>",
432
- "single_word": false,
433
- "lstrip": false,
434
- "rstrip": false,
435
- "normalized": false,
436
- "special": true
437
- },
438
- {
439
- "id": 55,
440
- "content": "</p>",
441
- "single_word": false,
442
- "lstrip": false,
443
- "rstrip": false,
444
- "normalized": false,
445
- "special": true
446
- },
447
- {
448
- "id": 56,
449
- "content": "<table>",
450
- "single_word": false,
451
- "lstrip": false,
452
- "rstrip": false,
453
- "normalized": false,
454
- "special": true
455
- },
456
- {
457
- "id": 57,
458
- "content": "<table/>",
459
- "single_word": false,
460
- "lstrip": false,
461
- "rstrip": false,
462
- "normalized": false,
463
- "special": true
464
- },
465
- {
466
- "id": 58,
467
- "content": "</table>",
468
- "single_word": false,
469
- "lstrip": false,
470
- "rstrip": false,
471
- "normalized": false,
472
- "special": true
473
- },
474
- {
475
- "id": 59,
476
- "content": "<li>",
477
- "single_word": false,
478
- "lstrip": false,
479
- "rstrip": false,
480
- "normalized": false,
481
- "special": true
482
- },
483
- {
484
- "id": 60,
485
- "content": "<li/>",
486
- "single_word": false,
487
- "lstrip": false,
488
- "rstrip": false,
489
- "normalized": false,
490
- "special": true
491
- },
492
- {
493
- "id": 61,
494
- "content": "</li>",
495
- "single_word": false,
496
- "lstrip": false,
497
- "rstrip": false,
498
- "normalized": false,
499
- "special": true
500
- },
501
- {
502
- "id": 62,
503
- "content": "<tr>",
504
- "single_word": false,
505
- "lstrip": false,
506
- "rstrip": false,
507
- "normalized": false,
508
- "special": true
509
- },
510
- {
511
- "id": 63,
512
- "content": "<tr/>",
513
- "single_word": false,
514
- "lstrip": false,
515
- "rstrip": false,
516
- "normalized": false,
517
- "special": true
518
- },
519
- {
520
- "id": 64,
521
- "content": "</tr>",
522
- "single_word": false,
523
- "lstrip": false,
524
- "rstrip": false,
525
- "normalized": false,
526
- "special": true
527
- },
528
- {
529
- "id": 65,
530
- "content": "<tbody>",
531
- "single_word": false,
532
- "lstrip": false,
533
- "rstrip": false,
534
- "normalized": false,
535
- "special": true
536
- },
537
- {
538
- "id": 66,
539
- "content": "<tbody/>",
540
- "single_word": false,
541
- "lstrip": false,
542
- "rstrip": false,
543
- "normalized": false,
544
- "special": true
545
- },
546
- {
547
- "id": 67,
548
- "content": "</tbody>",
549
- "single_word": false,
550
- "lstrip": false,
551
- "rstrip": false,
552
- "normalized": false,
553
- "special": true
554
- },
555
- {
556
- "id": 68,
557
- "content": "<img>",
558
- "single_word": false,
559
- "lstrip": false,
560
- "rstrip": false,
561
- "normalized": false,
562
- "special": true
563
- },
564
- {
565
- "id": 69,
566
- "content": "<img/>",
567
- "single_word": false,
568
- "lstrip": false,
569
- "rstrip": false,
570
- "normalized": false,
571
- "special": true
572
- },
573
- {
574
- "id": 70,
575
- "content": "</img>",
576
- "single_word": false,
577
- "lstrip": false,
578
- "rstrip": false,
579
- "normalized": false,
580
- "special": true
581
- },
582
- {
583
- "id": 71,
584
- "content": "<b>",
585
- "single_word": false,
586
- "lstrip": false,
587
- "rstrip": false,
588
- "normalized": false,
589
- "special": true
590
- },
591
- {
592
- "id": 72,
593
- "content": "<b/>",
594
- "single_word": false,
595
- "lstrip": false,
596
- "rstrip": false,
597
- "normalized": false,
598
- "special": true
599
- },
600
- {
601
- "id": 73,
602
- "content": "</b>",
603
- "single_word": false,
604
- "lstrip": false,
605
- "rstrip": false,
606
- "normalized": false,
607
- "special": true
608
- },
609
- {
610
- "id": 74,
611
- "content": "<td>",
612
- "single_word": false,
613
- "lstrip": false,
614
- "rstrip": false,
615
- "normalized": false,
616
- "special": true
617
- },
618
- {
619
- "id": 75,
620
- "content": "<td/>",
621
- "single_word": false,
622
- "lstrip": false,
623
- "rstrip": false,
624
- "normalized": false,
625
- "special": true
626
- },
627
- {
628
- "id": 76,
629
- "content": "</td>",
630
- "single_word": false,
631
- "lstrip": false,
632
- "rstrip": false,
633
- "normalized": false,
634
- "special": true
635
- },
636
- {
637
- "id": 115,
638
- "content": "<!--",
639
- "single_word": false,
640
- "lstrip": false,
641
- "rstrip": false,
642
- "normalized": false,
643
- "special": true
644
- },
645
- {
646
- "id": 118,
647
- "content": "<!DOCTYPE>",
648
- "single_word": false,
649
- "lstrip": false,
650
- "rstrip": false,
651
- "normalized": false,
652
- "special": true
653
- },
654
- {
655
- "id": 145,
656
- "content": "<|unused000|>",
657
- "single_word": false,
658
- "lstrip": false,
659
- "rstrip": false,
660
- "normalized": false,
661
- "special": true
662
- },
663
- {
664
- "id": 146,
665
- "content": "<|unused001|>",
666
- "single_word": false,
667
- "lstrip": false,
668
- "rstrip": false,
669
- "normalized": false,
670
- "special": true
671
- },
672
- {
673
- "id": 147,
674
- "content": "<|unused002|>",
675
- "single_word": false,
676
- "lstrip": false,
677
- "rstrip": false,
678
- "normalized": false,
679
- "special": true
680
- },
681
- {
682
- "id": 148,
683
- "content": "<|unused003|>",
684
- "single_word": false,
685
- "lstrip": false,
686
- "rstrip": false,
687
- "normalized": false,
688
- "special": true
689
- },
690
- {
691
- "id": 149,
692
- "content": "<|unused004|>",
693
- "single_word": false,
694
- "lstrip": false,
695
- "rstrip": false,
696
- "normalized": false,
697
- "special": true
698
- },
699
- {
700
- "id": 150,
701
- "content": "<|unused005|>",
702
- "single_word": false,
703
- "lstrip": false,
704
- "rstrip": false,
705
- "normalized": false,
706
- "special": true
707
- },
708
- {
709
- "id": 151,
710
- "content": "<|unused006|>",
711
- "single_word": false,
712
- "lstrip": false,
713
- "rstrip": false,
714
- "normalized": false,
715
- "special": true
716
- },
717
- {
718
- "id": 152,
719
- "content": "<|unused007|>",
720
- "single_word": false,
721
- "lstrip": false,
722
- "rstrip": false,
723
- "normalized": false,
724
- "special": true
725
- },
726
- {
727
- "id": 153,
728
- "content": "<|unused008|>",
729
- "single_word": false,
730
- "lstrip": false,
731
- "rstrip": false,
732
- "normalized": false,
733
- "special": true
734
- },
735
- {
736
- "id": 154,
737
- "content": "<|unused009|>",
738
- "single_word": false,
739
- "lstrip": false,
740
- "rstrip": false,
741
- "normalized": false,
742
- "special": true
743
- },
744
- {
745
- "id": 155,
746
- "content": "<|unused010|>",
747
- "single_word": false,
748
- "lstrip": false,
749
- "rstrip": false,
750
- "normalized": false,
751
- "special": true
752
- },
753
- {
754
- "id": 156,
755
- "content": "<|unused011|>",
756
- "single_word": false,
757
- "lstrip": false,
758
- "rstrip": false,
759
- "normalized": false,
760
- "special": true
761
- },
762
- {
763
- "id": 157,
764
- "content": "<|unused012|>",
765
- "single_word": false,
766
- "lstrip": false,
767
- "rstrip": false,
768
- "normalized": false,
769
- "special": true
770
- },
771
- {
772
- "id": 158,
773
- "content": "<|unused013|>",
774
- "single_word": false,
775
- "lstrip": false,
776
- "rstrip": false,
777
- "normalized": false,
778
- "special": true
779
- },
780
- {
781
- "id": 159,
782
- "content": "<|unused014|>",
783
- "single_word": false,
784
- "lstrip": false,
785
- "rstrip": false,
786
- "normalized": false,
787
- "special": true
788
- },
789
- {
790
- "id": 160,
791
- "content": "<|unused015|>",
792
- "single_word": false,
793
- "lstrip": false,
794
- "rstrip": false,
795
- "normalized": false,
796
- "special": true
797
- },
798
- {
799
- "id": 161,
800
- "content": "<|unused016|>",
801
- "single_word": false,
802
- "lstrip": false,
803
- "rstrip": false,
804
- "normalized": false,
805
- "special": true
806
- },
807
- {
808
- "id": 162,
809
- "content": "<|unused017|>",
810
- "single_word": false,
811
- "lstrip": false,
812
- "rstrip": false,
813
- "normalized": false,
814
- "special": true
815
- },
816
- {
817
- "id": 163,
818
- "content": "<|unused018|>",
819
- "single_word": false,
820
- "lstrip": false,
821
- "rstrip": false,
822
- "normalized": false,
823
- "special": true
824
- },
825
- {
826
- "id": 164,
827
- "content": "<|unused019|>",
828
- "single_word": false,
829
- "lstrip": false,
830
- "rstrip": false,
831
- "normalized": false,
832
- "special": true
833
- },
834
- {
835
- "id": 165,
836
- "content": "<|unused020|>",
837
- "single_word": false,
838
- "lstrip": false,
839
- "rstrip": false,
840
- "normalized": false,
841
- "special": true
842
- },
843
- {
844
- "id": 166,
845
- "content": "<|unused021|>",
846
- "single_word": false,
847
- "lstrip": false,
848
- "rstrip": false,
849
- "normalized": false,
850
- "special": true
851
- },
852
- {
853
- "id": 167,
854
- "content": "<|unused022|>",
855
- "single_word": false,
856
- "lstrip": false,
857
- "rstrip": false,
858
- "normalized": false,
859
- "special": true
860
- },
861
- {
862
- "id": 168,
863
- "content": "<|unused023|>",
864
- "single_word": false,
865
- "lstrip": false,
866
- "rstrip": false,
867
- "normalized": false,
868
- "special": true
869
- },
870
- {
871
- "id": 169,
872
- "content": "<|unused024|>",
873
- "single_word": false,
874
- "lstrip": false,
875
- "rstrip": false,
876
- "normalized": false,
877
- "special": true
878
- },
879
- {
880
- "id": 170,
881
- "content": "<|unused025|>",
882
- "single_word": false,
883
- "lstrip": false,
884
- "rstrip": false,
885
- "normalized": false,
886
- "special": true
887
- },
888
- {
889
- "id": 171,
890
- "content": "<|unused026|>",
891
- "single_word": false,
892
- "lstrip": false,
893
- "rstrip": false,
894
- "normalized": false,
895
- "special": true
896
- },
897
- {
898
- "id": 172,
899
- "content": "<|unused027|>",
900
- "single_word": false,
901
- "lstrip": false,
902
- "rstrip": false,
903
- "normalized": false,
904
- "special": true
905
- },
906
- {
907
- "id": 173,
908
- "content": "<|unused028|>",
909
- "single_word": false,
910
- "lstrip": false,
911
- "rstrip": false,
912
- "normalized": false,
913
- "special": true
914
- },
915
- {
916
- "id": 174,
917
- "content": "<|unused029|>",
918
- "single_word": false,
919
- "lstrip": false,
920
- "rstrip": false,
921
- "normalized": false,
922
- "special": true
923
- },
924
- {
925
- "id": 175,
926
- "content": "<|unused030|>",
927
- "single_word": false,
928
- "lstrip": false,
929
- "rstrip": false,
930
- "normalized": false,
931
- "special": true
932
- },
933
- {
934
- "id": 176,
935
- "content": "<|unused031|>",
936
- "single_word": false,
937
- "lstrip": false,
938
- "rstrip": false,
939
- "normalized": false,
940
- "special": true
941
- },
942
- {
943
- "id": 177,
944
- "content": "<|unused032|>",
945
- "single_word": false,
946
- "lstrip": false,
947
- "rstrip": false,
948
- "normalized": false,
949
- "special": true
950
- },
951
- {
952
- "id": 178,
953
- "content": "<|unused033|>",
954
- "single_word": false,
955
- "lstrip": false,
956
- "rstrip": false,
957
- "normalized": false,
958
- "special": true
959
- },
960
- {
961
- "id": 179,
962
- "content": "<|unused034|>",
963
- "single_word": false,
964
- "lstrip": false,
965
- "rstrip": false,
966
- "normalized": false,
967
- "special": true
968
- },
969
- {
970
- "id": 180,
971
- "content": "<|unused035|>",
972
- "single_word": false,
973
- "lstrip": false,
974
- "rstrip": false,
975
- "normalized": false,
976
- "special": true
977
- },
978
- {
979
- "id": 181,
980
- "content": "<|unused036|>",
981
- "single_word": false,
982
- "lstrip": false,
983
- "rstrip": false,
984
- "normalized": false,
985
- "special": true
986
- },
987
- {
988
- "id": 182,
989
- "content": "<|unused037|>",
990
- "single_word": false,
991
- "lstrip": false,
992
- "rstrip": false,
993
- "normalized": false,
994
- "special": true
995
- },
996
- {
997
- "id": 183,
998
- "content": "<|unused038|>",
999
- "single_word": false,
1000
- "lstrip": false,
1001
- "rstrip": false,
1002
- "normalized": false,
1003
- "special": true
1004
- },
1005
- {
1006
- "id": 184,
1007
- "content": "<|unused039|>",
1008
- "single_word": false,
1009
- "lstrip": false,
1010
- "rstrip": false,
1011
- "normalized": false,
1012
- "special": true
1013
- },
1014
- {
1015
- "id": 185,
1016
- "content": "<|unused040|>",
1017
- "single_word": false,
1018
- "lstrip": false,
1019
- "rstrip": false,
1020
- "normalized": false,
1021
- "special": true
1022
- },
1023
- {
1024
- "id": 186,
1025
- "content": "<|unused041|>",
1026
- "single_word": false,
1027
- "lstrip": false,
1028
- "rstrip": false,
1029
- "normalized": false,
1030
- "special": true
1031
- },
1032
- {
1033
- "id": 187,
1034
- "content": "<|unused042|>",
1035
- "single_word": false,
1036
- "lstrip": false,
1037
- "rstrip": false,
1038
- "normalized": false,
1039
- "special": true
1040
- },
1041
- {
1042
- "id": 188,
1043
- "content": "<|unused043|>",
1044
- "single_word": false,
1045
- "lstrip": false,
1046
- "rstrip": false,
1047
- "normalized": false,
1048
- "special": true
1049
- },
1050
- {
1051
- "id": 189,
1052
- "content": "<|unused044|>",
1053
- "single_word": false,
1054
- "lstrip": false,
1055
- "rstrip": false,
1056
- "normalized": false,
1057
- "special": true
1058
- },
1059
- {
1060
- "id": 190,
1061
- "content": "<|unused045|>",
1062
- "single_word": false,
1063
- "lstrip": false,
1064
- "rstrip": false,
1065
- "normalized": false,
1066
- "special": true
1067
- },
1068
- {
1069
- "id": 191,
1070
- "content": "<|unused046|>",
1071
- "single_word": false,
1072
- "lstrip": false,
1073
- "rstrip": false,
1074
- "normalized": false,
1075
- "special": true
1076
- },
1077
- {
1078
- "id": 192,
1079
- "content": "<|unused047|>",
1080
- "single_word": false,
1081
- "lstrip": false,
1082
- "rstrip": false,
1083
- "normalized": false,
1084
- "special": true
1085
- },
1086
- {
1087
- "id": 193,
1088
- "content": "<|unused048|>",
1089
- "single_word": false,
1090
- "lstrip": false,
1091
- "rstrip": false,
1092
- "normalized": false,
1093
- "special": true
1094
- },
1095
- {
1096
- "id": 194,
1097
- "content": "<|unused049|>",
1098
- "single_word": false,
1099
- "lstrip": false,
1100
- "rstrip": false,
1101
- "normalized": false,
1102
- "special": true
1103
- },
1104
- {
1105
- "id": 195,
1106
- "content": "<|unused050|>",
1107
- "single_word": false,
1108
- "lstrip": false,
1109
- "rstrip": false,
1110
- "normalized": false,
1111
- "special": true
1112
- },
1113
- {
1114
- "id": 196,
1115
- "content": "<|unused051|>",
1116
- "single_word": false,
1117
- "lstrip": false,
1118
- "rstrip": false,
1119
- "normalized": false,
1120
- "special": true
1121
- },
1122
- {
1123
- "id": 197,
1124
- "content": "<|unused052|>",
1125
- "single_word": false,
1126
- "lstrip": false,
1127
- "rstrip": false,
1128
- "normalized": false,
1129
- "special": true
1130
- },
1131
- {
1132
- "id": 198,
1133
- "content": "<|unused053|>",
1134
- "single_word": false,
1135
- "lstrip": false,
1136
- "rstrip": false,
1137
- "normalized": false,
1138
- "special": true
1139
- },
1140
- {
1141
- "id": 199,
1142
- "content": "<|unused054|>",
1143
- "single_word": false,
1144
- "lstrip": false,
1145
- "rstrip": false,
1146
- "normalized": false,
1147
- "special": true
1148
- },
1149
- {
1150
- "id": 200,
1151
- "content": "<|unused055|>",
1152
- "single_word": false,
1153
- "lstrip": false,
1154
- "rstrip": false,
1155
- "normalized": false,
1156
- "special": true
1157
- },
1158
- {
1159
- "id": 201,
1160
- "content": "<|unused056|>",
1161
- "single_word": false,
1162
- "lstrip": false,
1163
- "rstrip": false,
1164
- "normalized": false,
1165
- "special": true
1166
- },
1167
- {
1168
- "id": 202,
1169
- "content": "<|unused057|>",
1170
- "single_word": false,
1171
- "lstrip": false,
1172
- "rstrip": false,
1173
- "normalized": false,
1174
- "special": true
1175
- },
1176
- {
1177
- "id": 203,
1178
- "content": "<|unused058|>",
1179
- "single_word": false,
1180
- "lstrip": false,
1181
- "rstrip": false,
1182
- "normalized": false,
1183
- "special": true
1184
- },
1185
- {
1186
- "id": 204,
1187
- "content": "<|unused059|>",
1188
- "single_word": false,
1189
- "lstrip": false,
1190
- "rstrip": false,
1191
- "normalized": false,
1192
- "special": true
1193
- },
1194
- {
1195
- "id": 205,
1196
- "content": "<|unused060|>",
1197
- "single_word": false,
1198
- "lstrip": false,
1199
- "rstrip": false,
1200
- "normalized": false,
1201
- "special": true
1202
- },
1203
- {
1204
- "id": 206,
1205
- "content": "<|unused061|>",
1206
- "single_word": false,
1207
- "lstrip": false,
1208
- "rstrip": false,
1209
- "normalized": false,
1210
- "special": true
1211
- },
1212
- {
1213
- "id": 207,
1214
- "content": "<|unused062|>",
1215
- "single_word": false,
1216
- "lstrip": false,
1217
- "rstrip": false,
1218
- "normalized": false,
1219
- "special": true
1220
- },
1221
- {
1222
- "id": 208,
1223
- "content": "<|unused063|>",
1224
- "single_word": false,
1225
- "lstrip": false,
1226
- "rstrip": false,
1227
- "normalized": false,
1228
- "special": true
1229
- },
1230
- {
1231
- "id": 209,
1232
- "content": "<|unused064|>",
1233
- "single_word": false,
1234
- "lstrip": false,
1235
- "rstrip": false,
1236
- "normalized": false,
1237
- "special": true
1238
- },
1239
- {
1240
- "id": 210,
1241
- "content": "<|unused065|>",
1242
- "single_word": false,
1243
- "lstrip": false,
1244
- "rstrip": false,
1245
- "normalized": false,
1246
- "special": true
1247
- },
1248
- {
1249
- "id": 211,
1250
- "content": "<|unused066|>",
1251
- "single_word": false,
1252
- "lstrip": false,
1253
- "rstrip": false,
1254
- "normalized": false,
1255
- "special": true
1256
- },
1257
- {
1258
- "id": 212,
1259
- "content": "<|unused067|>",
1260
- "single_word": false,
1261
- "lstrip": false,
1262
- "rstrip": false,
1263
- "normalized": false,
1264
- "special": true
1265
- },
1266
- {
1267
- "id": 213,
1268
- "content": "<|unused068|>",
1269
- "single_word": false,
1270
- "lstrip": false,
1271
- "rstrip": false,
1272
- "normalized": false,
1273
- "special": true
1274
- },
1275
- {
1276
- "id": 214,
1277
- "content": "<|unused069|>",
1278
- "single_word": false,
1279
- "lstrip": false,
1280
- "rstrip": false,
1281
- "normalized": false,
1282
- "special": true
1283
- },
1284
- {
1285
- "id": 215,
1286
- "content": "<|unused070|>",
1287
- "single_word": false,
1288
- "lstrip": false,
1289
- "rstrip": false,
1290
- "normalized": false,
1291
- "special": true
1292
- },
1293
- {
1294
- "id": 216,
1295
- "content": "<|unused071|>",
1296
- "single_word": false,
1297
- "lstrip": false,
1298
- "rstrip": false,
1299
- "normalized": false,
1300
- "special": true
1301
- },
1302
- {
1303
- "id": 217,
1304
- "content": "<|unused072|>",
1305
- "single_word": false,
1306
- "lstrip": false,
1307
- "rstrip": false,
1308
- "normalized": false,
1309
- "special": true
1310
- },
1311
- {
1312
- "id": 218,
1313
- "content": "<|unused073|>",
1314
- "single_word": false,
1315
- "lstrip": false,
1316
- "rstrip": false,
1317
- "normalized": false,
1318
- "special": true
1319
- },
1320
- {
1321
- "id": 219,
1322
- "content": "<|unused074|>",
1323
- "single_word": false,
1324
- "lstrip": false,
1325
- "rstrip": false,
1326
- "normalized": false,
1327
- "special": true
1328
- },
1329
- {
1330
- "id": 220,
1331
- "content": "<|unused075|>",
1332
- "single_word": false,
1333
- "lstrip": false,
1334
- "rstrip": false,
1335
- "normalized": false,
1336
- "special": true
1337
- },
1338
- {
1339
- "id": 221,
1340
- "content": "<|unused076|>",
1341
- "single_word": false,
1342
- "lstrip": false,
1343
- "rstrip": false,
1344
- "normalized": false,
1345
- "special": true
1346
- },
1347
- {
1348
- "id": 222,
1349
- "content": "<|unused077|>",
1350
- "single_word": false,
1351
- "lstrip": false,
1352
- "rstrip": false,
1353
- "normalized": false,
1354
- "special": true
1355
- },
1356
- {
1357
- "id": 223,
1358
- "content": "<|unused078|>",
1359
- "single_word": false,
1360
- "lstrip": false,
1361
- "rstrip": false,
1362
- "normalized": false,
1363
- "special": true
1364
- },
1365
- {
1366
- "id": 224,
1367
- "content": "<|unused079|>",
1368
- "single_word": false,
1369
- "lstrip": false,
1370
- "rstrip": false,
1371
- "normalized": false,
1372
- "special": true
1373
- },
1374
- {
1375
- "id": 225,
1376
- "content": "<|unused080|>",
1377
- "single_word": false,
1378
- "lstrip": false,
1379
- "rstrip": false,
1380
- "normalized": false,
1381
- "special": true
1382
- },
1383
- {
1384
- "id": 226,
1385
- "content": "<|unused081|>",
1386
- "single_word": false,
1387
- "lstrip": false,
1388
- "rstrip": false,
1389
- "normalized": false,
1390
- "special": true
1391
- },
1392
- {
1393
- "id": 227,
1394
- "content": "<|unused082|>",
1395
- "single_word": false,
1396
- "lstrip": false,
1397
- "rstrip": false,
1398
- "normalized": false,
1399
- "special": true
1400
- },
1401
- {
1402
- "id": 228,
1403
- "content": "<|unused083|>",
1404
- "single_word": false,
1405
- "lstrip": false,
1406
- "rstrip": false,
1407
- "normalized": false,
1408
- "special": true
1409
- },
1410
- {
1411
- "id": 229,
1412
- "content": "<|unused084|>",
1413
- "single_word": false,
1414
- "lstrip": false,
1415
- "rstrip": false,
1416
- "normalized": false,
1417
- "special": true
1418
- },
1419
- {
1420
- "id": 230,
1421
- "content": "<|unused085|>",
1422
- "single_word": false,
1423
- "lstrip": false,
1424
- "rstrip": false,
1425
- "normalized": false,
1426
- "special": true
1427
- },
1428
- {
1429
- "id": 231,
1430
- "content": "<|unused086|>",
1431
- "single_word": false,
1432
- "lstrip": false,
1433
- "rstrip": false,
1434
- "normalized": false,
1435
- "special": true
1436
- },
1437
- {
1438
- "id": 232,
1439
- "content": "<|unused087|>",
1440
- "single_word": false,
1441
- "lstrip": false,
1442
- "rstrip": false,
1443
- "normalized": false,
1444
- "special": true
1445
- },
1446
- {
1447
- "id": 233,
1448
- "content": "<|unused088|>",
1449
- "single_word": false,
1450
- "lstrip": false,
1451
- "rstrip": false,
1452
- "normalized": false,
1453
- "special": true
1454
- },
1455
- {
1456
- "id": 234,
1457
- "content": "<|unused089|>",
1458
- "single_word": false,
1459
- "lstrip": false,
1460
- "rstrip": false,
1461
- "normalized": false,
1462
- "special": true
1463
- },
1464
- {
1465
- "id": 235,
1466
- "content": "<|unused090|>",
1467
- "single_word": false,
1468
- "lstrip": false,
1469
- "rstrip": false,
1470
- "normalized": false,
1471
- "special": true
1472
- },
1473
- {
1474
- "id": 236,
1475
- "content": "<|unused091|>",
1476
- "single_word": false,
1477
- "lstrip": false,
1478
- "rstrip": false,
1479
- "normalized": false,
1480
- "special": true
1481
- },
1482
- {
1483
- "id": 237,
1484
- "content": "<|unused092|>",
1485
- "single_word": false,
1486
- "lstrip": false,
1487
- "rstrip": false,
1488
- "normalized": false,
1489
- "special": true
1490
- },
1491
- {
1492
- "id": 238,
1493
- "content": "<|unused093|>",
1494
- "single_word": false,
1495
- "lstrip": false,
1496
- "rstrip": false,
1497
- "normalized": false,
1498
- "special": true
1499
- },
1500
- {
1501
- "id": 239,
1502
- "content": "<|unused094|>",
1503
- "single_word": false,
1504
- "lstrip": false,
1505
- "rstrip": false,
1506
- "normalized": false,
1507
- "special": true
1508
- },
1509
- {
1510
- "id": 240,
1511
- "content": "<|unused095|>",
1512
- "single_word": false,
1513
- "lstrip": false,
1514
- "rstrip": false,
1515
- "normalized": false,
1516
- "special": true
1517
- },
1518
- {
1519
- "id": 241,
1520
- "content": "<|unused096|>",
1521
- "single_word": false,
1522
- "lstrip": false,
1523
- "rstrip": false,
1524
- "normalized": false,
1525
- "special": true
1526
- },
1527
- {
1528
- "id": 242,
1529
- "content": "<|unused097|>",
1530
- "single_word": false,
1531
- "lstrip": false,
1532
- "rstrip": false,
1533
- "normalized": false,
1534
- "special": true
1535
- },
1536
- {
1537
- "id": 243,
1538
- "content": "<|unused098|>",
1539
- "single_word": false,
1540
- "lstrip": false,
1541
- "rstrip": false,
1542
- "normalized": false,
1543
- "special": true
1544
- },
1545
- {
1546
- "id": 244,
1547
- "content": "<|unused099|>",
1548
- "single_word": false,
1549
- "lstrip": false,
1550
- "rstrip": false,
1551
- "normalized": false,
1552
- "special": true
1553
- },
1554
- {
1555
- "id": 245,
1556
- "content": "<|unused100|>",
1557
- "single_word": false,
1558
- "lstrip": false,
1559
- "rstrip": false,
1560
- "normalized": false,
1561
- "special": true
1562
- },
1563
- {
1564
- "id": 246,
1565
- "content": "<|unused101|>",
1566
- "single_word": false,
1567
- "lstrip": false,
1568
- "rstrip": false,
1569
- "normalized": false,
1570
- "special": true
1571
- },
1572
- {
1573
- "id": 247,
1574
- "content": "<|unused102|>",
1575
- "single_word": false,
1576
- "lstrip": false,
1577
- "rstrip": false,
1578
- "normalized": false,
1579
- "special": true
1580
- },
1581
- {
1582
- "id": 248,
1583
- "content": "<|unused103|>",
1584
- "single_word": false,
1585
- "lstrip": false,
1586
- "rstrip": false,
1587
- "normalized": false,
1588
- "special": true
1589
- },
1590
- {
1591
- "id": 249,
1592
- "content": "<|unused104|>",
1593
- "single_word": false,
1594
- "lstrip": false,
1595
- "rstrip": false,
1596
- "normalized": false,
1597
- "special": true
1598
- },
1599
- {
1600
- "id": 250,
1601
- "content": "<|unused105|>",
1602
- "single_word": false,
1603
- "lstrip": false,
1604
- "rstrip": false,
1605
- "normalized": false,
1606
- "special": true
1607
- },
1608
- {
1609
- "id": 251,
1610
- "content": "<|unused106|>",
1611
- "single_word": false,
1612
- "lstrip": false,
1613
- "rstrip": false,
1614
- "normalized": false,
1615
- "special": true
1616
- },
1617
- {
1618
- "id": 252,
1619
- "content": "<|unused107|>",
1620
- "single_word": false,
1621
- "lstrip": false,
1622
- "rstrip": false,
1623
- "normalized": false,
1624
- "special": true
1625
- },
1626
- {
1627
- "id": 253,
1628
- "content": "<|unused108|>",
1629
- "single_word": false,
1630
- "lstrip": false,
1631
- "rstrip": false,
1632
- "normalized": false,
1633
- "special": true
1634
- },
1635
- {
1636
- "id": 254,
1637
- "content": "<|unused109|>",
1638
- "single_word": false,
1639
- "lstrip": false,
1640
- "rstrip": false,
1641
- "normalized": false,
1642
- "special": true
1643
- },
1644
- {
1645
- "id": 255,
1646
- "content": "<|unused110|>",
1647
- "single_word": false,
1648
- "lstrip": false,
1649
- "rstrip": false,
1650
- "normalized": false,
1651
- "special": true
1652
- },
1653
- {
1654
- "id": 256,
1655
- "content": "<|unused111|>",
1656
- "single_word": false,
1657
- "lstrip": false,
1658
- "rstrip": false,
1659
- "normalized": false,
1660
- "special": true
1661
- },
1662
- {
1663
- "id": 257,
1664
- "content": "<|unused112|>",
1665
- "single_word": false,
1666
- "lstrip": false,
1667
- "rstrip": false,
1668
- "normalized": false,
1669
- "special": true
1670
- },
1671
- {
1672
- "id": 258,
1673
- "content": "<|unused113|>",
1674
- "single_word": false,
1675
- "lstrip": false,
1676
- "rstrip": false,
1677
- "normalized": false,
1678
- "special": true
1679
- },
1680
- {
1681
- "id": 259,
1682
- "content": "<|unused114|>",
1683
- "single_word": false,
1684
- "lstrip": false,
1685
- "rstrip": false,
1686
- "normalized": false,
1687
- "special": true
1688
- },
1689
- {
1690
- "id": 260,
1691
- "content": "<|unused115|>",
1692
- "single_word": false,
1693
- "lstrip": false,
1694
- "rstrip": false,
1695
- "normalized": false,
1696
- "special": true
1697
- },
1698
- {
1699
- "id": 261,
1700
- "content": "<|unused116|>",
1701
- "single_word": false,
1702
- "lstrip": false,
1703
- "rstrip": false,
1704
- "normalized": false,
1705
- "special": true
1706
- },
1707
- {
1708
- "id": 262,
1709
- "content": "<|unused117|>",
1710
- "single_word": false,
1711
- "lstrip": false,
1712
- "rstrip": false,
1713
- "normalized": false,
1714
- "special": true
1715
- },
1716
- {
1717
- "id": 263,
1718
- "content": "<|unused118|>",
1719
- "single_word": false,
1720
- "lstrip": false,
1721
- "rstrip": false,
1722
- "normalized": false,
1723
- "special": true
1724
- },
1725
- {
1726
- "id": 264,
1727
- "content": "<|unused119|>",
1728
- "single_word": false,
1729
- "lstrip": false,
1730
- "rstrip": false,
1731
- "normalized": false,
1732
- "special": true
1733
- },
1734
- {
1735
- "id": 265,
1736
- "content": "<|unused120|>",
1737
- "single_word": false,
1738
- "lstrip": false,
1739
- "rstrip": false,
1740
- "normalized": false,
1741
- "special": true
1742
- },
1743
- {
1744
- "id": 266,
1745
- "content": "<|unused121|>",
1746
- "single_word": false,
1747
- "lstrip": false,
1748
- "rstrip": false,
1749
- "normalized": false,
1750
- "special": true
1751
- },
1752
- {
1753
- "id": 267,
1754
- "content": "<|unused122|>",
1755
- "single_word": false,
1756
- "lstrip": false,
1757
- "rstrip": false,
1758
- "normalized": false,
1759
- "special": true
1760
- },
1761
- {
1762
- "id": 268,
1763
- "content": "<|unused123|>",
1764
- "single_word": false,
1765
- "lstrip": false,
1766
- "rstrip": false,
1767
- "normalized": false,
1768
- "special": true
1769
- },
1770
- {
1771
- "id": 269,
1772
- "content": "<|unused124|>",
1773
- "single_word": false,
1774
- "lstrip": false,
1775
- "rstrip": false,
1776
- "normalized": false,
1777
- "special": true
1778
- },
1779
- {
1780
- "id": 270,
1781
- "content": "<|unused125|>",
1782
- "single_word": false,
1783
- "lstrip": false,
1784
- "rstrip": false,
1785
- "normalized": false,
1786
- "special": true
1787
- },
1788
- {
1789
- "id": 271,
1790
- "content": "<|unused126|>",
1791
- "single_word": false,
1792
- "lstrip": false,
1793
- "rstrip": false,
1794
- "normalized": false,
1795
- "special": true
1796
- },
1797
- {
1798
- "id": 272,
1799
- "content": "<|unused127|>",
1800
- "single_word": false,
1801
- "lstrip": false,
1802
- "rstrip": false,
1803
- "normalized": false,
1804
- "special": true
1805
- },
1806
- {
1807
- "id": 273,
1808
- "content": "<|unused128|>",
1809
- "single_word": false,
1810
- "lstrip": false,
1811
- "rstrip": false,
1812
- "normalized": false,
1813
- "special": true
1814
- },
1815
- {
1816
- "id": 274,
1817
- "content": "<|unused129|>",
1818
- "single_word": false,
1819
- "lstrip": false,
1820
- "rstrip": false,
1821
- "normalized": false,
1822
- "special": true
1823
- },
1824
- {
1825
- "id": 275,
1826
- "content": "<|unused130|>",
1827
- "single_word": false,
1828
- "lstrip": false,
1829
- "rstrip": false,
1830
- "normalized": false,
1831
- "special": true
1832
- },
1833
- {
1834
- "id": 276,
1835
- "content": "<|unused131|>",
1836
- "single_word": false,
1837
- "lstrip": false,
1838
- "rstrip": false,
1839
- "normalized": false,
1840
- "special": true
1841
- },
1842
- {
1843
- "id": 277,
1844
- "content": "<|unused132|>",
1845
- "single_word": false,
1846
- "lstrip": false,
1847
- "rstrip": false,
1848
- "normalized": false,
1849
- "special": true
1850
- },
1851
- {
1852
- "id": 278,
1853
- "content": "<|unused133|>",
1854
- "single_word": false,
1855
- "lstrip": false,
1856
- "rstrip": false,
1857
- "normalized": false,
1858
- "special": true
1859
- },
1860
- {
1861
- "id": 279,
1862
- "content": "<|unused134|>",
1863
- "single_word": false,
1864
- "lstrip": false,
1865
- "rstrip": false,
1866
- "normalized": false,
1867
- "special": true
1868
- },
1869
- {
1870
- "id": 280,
1871
- "content": "<|unused135|>",
1872
- "single_word": false,
1873
- "lstrip": false,
1874
- "rstrip": false,
1875
- "normalized": false,
1876
- "special": true
1877
- },
1878
- {
1879
- "id": 281,
1880
- "content": "<|unused136|>",
1881
- "single_word": false,
1882
- "lstrip": false,
1883
- "rstrip": false,
1884
- "normalized": false,
1885
- "special": true
1886
- },
1887
- {
1888
- "id": 282,
1889
- "content": "<|unused137|>",
1890
- "single_word": false,
1891
- "lstrip": false,
1892
- "rstrip": false,
1893
- "normalized": false,
1894
- "special": true
1895
- },
1896
- {
1897
- "id": 283,
1898
- "content": "<|unused138|>",
1899
- "single_word": false,
1900
- "lstrip": false,
1901
- "rstrip": false,
1902
- "normalized": false,
1903
- "special": true
1904
- },
1905
- {
1906
- "id": 284,
1907
- "content": "<|unused139|>",
1908
- "single_word": false,
1909
- "lstrip": false,
1910
- "rstrip": false,
1911
- "normalized": false,
1912
- "special": true
1913
- },
1914
- {
1915
- "id": 285,
1916
- "content": "<|unused140|>",
1917
- "single_word": false,
1918
- "lstrip": false,
1919
- "rstrip": false,
1920
- "normalized": false,
1921
- "special": true
1922
- },
1923
- {
1924
- "id": 286,
1925
- "content": "<|unused141|>",
1926
- "single_word": false,
1927
- "lstrip": false,
1928
- "rstrip": false,
1929
- "normalized": false,
1930
- "special": true
1931
- },
1932
- {
1933
- "id": 287,
1934
- "content": "<|unused142|>",
1935
- "single_word": false,
1936
- "lstrip": false,
1937
- "rstrip": false,
1938
- "normalized": false,
1939
- "special": true
1940
- },
1941
- {
1942
- "id": 288,
1943
- "content": "<|unused143|>",
1944
- "single_word": false,
1945
- "lstrip": false,
1946
- "rstrip": false,
1947
- "normalized": false,
1948
- "special": true
1949
- },
1950
- {
1951
- "id": 289,
1952
- "content": "<|unused144|>",
1953
- "single_word": false,
1954
- "lstrip": false,
1955
- "rstrip": false,
1956
- "normalized": false,
1957
- "special": true
1958
- },
1959
- {
1960
- "id": 290,
1961
- "content": "<|unused145|>",
1962
- "single_word": false,
1963
- "lstrip": false,
1964
- "rstrip": false,
1965
- "normalized": false,
1966
- "special": true
1967
- },
1968
- {
1969
- "id": 291,
1970
- "content": "<|unused146|>",
1971
- "single_word": false,
1972
- "lstrip": false,
1973
- "rstrip": false,
1974
- "normalized": false,
1975
- "special": true
1976
- },
1977
- {
1978
- "id": 292,
1979
- "content": "<|unused147|>",
1980
- "single_word": false,
1981
- "lstrip": false,
1982
- "rstrip": false,
1983
- "normalized": false,
1984
- "special": true
1985
- },
1986
- {
1987
- "id": 293,
1988
- "content": "<|unused148|>",
1989
- "single_word": false,
1990
- "lstrip": false,
1991
- "rstrip": false,
1992
- "normalized": false,
1993
- "special": true
1994
- },
1995
- {
1996
- "id": 294,
1997
- "content": "<|unused149|>",
1998
- "single_word": false,
1999
- "lstrip": false,
2000
- "rstrip": false,
2001
- "normalized": false,
2002
- "special": true
2003
- },
2004
- {
2005
- "id": 295,
2006
- "content": "<|unused150|>",
2007
- "single_word": false,
2008
- "lstrip": false,
2009
- "rstrip": false,
2010
- "normalized": false,
2011
- "special": true
2012
- },
2013
- {
2014
- "id": 296,
2015
- "content": "<|unused151|>",
2016
- "single_word": false,
2017
- "lstrip": false,
2018
- "rstrip": false,
2019
- "normalized": false,
2020
- "special": true
2021
- },
2022
- {
2023
- "id": 297,
2024
- "content": "<|unused152|>",
2025
- "single_word": false,
2026
- "lstrip": false,
2027
- "rstrip": false,
2028
- "normalized": false,
2029
- "special": true
2030
- },
2031
- {
2032
- "id": 298,
2033
- "content": "<|unused153|>",
2034
- "single_word": false,
2035
- "lstrip": false,
2036
- "rstrip": false,
2037
- "normalized": false,
2038
- "special": true
2039
- },
2040
- {
2041
- "id": 299,
2042
- "content": "<|unused154|>",
2043
- "single_word": false,
2044
- "lstrip": false,
2045
- "rstrip": false,
2046
- "normalized": false,
2047
- "special": true
2048
- },
2049
- {
2050
- "id": 300,
2051
- "content": "<|unused155|>",
2052
- "single_word": false,
2053
- "lstrip": false,
2054
- "rstrip": false,
2055
- "normalized": false,
2056
- "special": true
2057
- },
2058
- {
2059
- "id": 301,
2060
- "content": "<|unused156|>",
2061
- "single_word": false,
2062
- "lstrip": false,
2063
- "rstrip": false,
2064
- "normalized": false,
2065
- "special": true
2066
- },
2067
- {
2068
- "id": 302,
2069
- "content": "<|unused157|>",
2070
- "single_word": false,
2071
- "lstrip": false,
2072
- "rstrip": false,
2073
- "normalized": false,
2074
- "special": true
2075
- },
2076
- {
2077
- "id": 303,
2078
- "content": "<|unused158|>",
2079
- "single_word": false,
2080
- "lstrip": false,
2081
- "rstrip": false,
2082
- "normalized": false,
2083
- "special": true
2084
- },
2085
- {
2086
- "id": 304,
2087
- "content": "<|unused159|>",
2088
- "single_word": false,
2089
- "lstrip": false,
2090
- "rstrip": false,
2091
- "normalized": false,
2092
- "special": true
2093
  }
2094
  ],
2095
  "normalizer": {
@@ -2121,12 +60,6 @@
2121
  },
2122
  {
2123
  "type": "Fuse"
2124
- },
2125
- {
2126
- "type": "Strip",
2127
- "content": " ",
2128
- "start": 1,
2129
- "stop": 0
2130
  }
2131
  ]
2132
  },
@@ -2142,9 +75,17 @@
2142
  "<unk>": 0,
2143
  "<|startoftext|>": 1,
2144
  "<|endoftext|>": 2,
 
 
 
2145
  "<|im_start|>": 6,
2146
  "<|im_end|>": 7,
2147
  "<|im_sep|>": 8,
 
 
 
 
 
2148
  "<fim_prefix>": 14,
2149
  "<fim_middle>": 15,
2150
  "<fim_suffix>": 16,
@@ -176164,4 +174105,4 @@
176164
  "现 今"
176165
  ]
176166
  }
176167
- }
 
29
  "rstrip": false,
30
  "normalized": false,
31
  "special": true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  }
33
  ],
34
  "normalizer": {
 
60
  },
61
  {
62
  "type": "Fuse"
 
 
 
 
 
 
63
  }
64
  ]
65
  },
 
75
  "<unk>": 0,
76
  "<|startoftext|>": 1,
77
  "<|endoftext|>": 2,
78
+ "<|Human|>": 3,
79
+ "<|Assistant|>": 4,
80
+ "<|System|>": 5,
81
  "<|im_start|>": 6,
82
  "<|im_end|>": 7,
83
  "<|im_sep|>": 8,
84
+ "<|reserved003|>": 9,
85
+ "<|reserved004|>": 10,
86
+ "<|reserved005|>": 11,
87
+ "<|reserved006|>": 12,
88
+ "<|reserved007|>": 13,
89
  "<fim_prefix>": 14,
90
  "<fim_middle>": 15,
91
  "<fim_suffix>": 16,
 
174105
  "现 今"
174106
  ]
174107
  }
174108
+ }