File size: 1,192 Bytes
14f163e
cdb5e0a
 
 
 
 
fb6fbd7
 
4fbef06
 
66ef483
 
b6c7049
03d0de6
 
4c54cb2
b6c7049
66ef483
 
c9a82fd
fb6fbd7
6b545ab
5fc65fc
 
 
 
4c54cb2
c979fd7
 
 
 
 
 
 
fb6fbd7
cdb5e0a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
tags:
- generated_from_keras_callback
model-index:
- name: US_politicians_covid_skepticism
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->



This model is a fine-tuned version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on a dataset of 10k tweets about COVID-19 policies from US legislators in the House and Senate. 

The model is intended to identify skepticism of COVID-19 policies (i.e. masks, social distancing, lockdowns, vaccines etc.). 



It's a pretty simple task but I used a grid search to optimize hyperparameters. The model uses the following hyperparamters: 

**Optimized Hyperparameters**
- The best learning rate is: 9.928559980965476e-06
- The best weight decay is: 0.003083325125091835
- The best epoch is : 5
- The best train split is : 0.2864649363822965

**Training**
- Train Loss: 0.1007
- Train Sparse Categorical Accuracy: 0.9591
- Validation Loss: 0.0913
- Validation Sparse Categorical Accuracy: 0.9627
- Optimizer: Adam
- Starting Learn rate: 5e-07