z-dickson commited on
Commit
4c54cb2
·
1 Parent(s): 98e110f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -15
README.md CHANGED
@@ -13,26 +13,19 @@ probably proofread and complete it, then remove this comment. -->
13
 
14
  This model is a fine-tuned version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on a dataset of 10k tweets about COVID-19 policies from US legislators in the House and Senate.
15
 
16
- The model is intended to identify skepticism (label == 1) of COVID-19 policies (i.e. masks, social distancing, lockdowns, vaccines etc.).
17
 
18
 
19
- It's a pretty simple task but I used a grid search to optimize hyperparameters. The final model is achieves the following results and uses the following hyperparamters:
20
 
21
- - 'train_runtime': 174.3258
22
- - 'train_samples_per_second': 18.896
23
- - 'train_steps_per_second': 2.375
24
- - 'train_loss': 0.1576320076910194
25
- - 'eval_loss': 0.8522606492042542
26
- - 'eval_runtime': 3.8368
27
- - 'eval_samples_per_second': 70.111
28
- - 'eval_steps_per_second': 8.862
29
- - 'epoch': 6.0
30
 
31
  Optimized Hyperparameters
32
  ----------------------------------------------------------------------------------------------------
33
- - The best learning rate is: 5.4761828368201554e-05
34
- - The best weight decay is: 0.0003655991822889909
35
- - The best epoch is : 6
36
- - The best train split is : 0.3284489429375188
 
 
37
 
38
 
 
13
 
14
  This model is a fine-tuned version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on a dataset of 10k tweets about COVID-19 policies from US legislators in the House and Senate.
15
 
16
+ The model is intended to identify skepticism of COVID-19 policies (i.e. masks, social distancing, lockdowns, vaccines etc.).
17
 
18
 
 
19
 
20
+ It's a pretty simple task but I used a grid search to optimize hyperparameters. The final model is achieves the following results and uses the following hyperparamters:
 
 
 
 
 
 
 
 
21
 
22
  Optimized Hyperparameters
23
  ----------------------------------------------------------------------------------------------------
24
+ The best learning rate is: 9.928559980965476e-06
25
+ The best weight decay is: 0.003083325125091835
26
+ The best epoch is : 5
27
+ The best train split is : 0.2864649363822965
28
+
29
+
30
 
31