YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
GPT Neo 125m fine-tuned
Pushing model to repo
- Login to hugging face,
from huggingface_hub import notebook_login
notebook_login()
- Then push model to repo.
model.push_to_hub("gpt-neo-125m-finetuned", use_temp_dir=True)
tokenizer.push_to_hub("gpt-neo-125m-finetuned", use_temp_dir=True)
Using the Model
Load the model along with the tokenizer:
tokenizer = GPT2Tokenizer.from_pretrained("ytling/gpt-neo-125m-finetuned", bos_token='<|startoftext|>',eos_token='<|endoftext|>', pad_token='<|pad|>')
gpt_model = GPTNeoForCausalLM.from_pretrained("ytling/gpt-neo-125m-finetuned").cuda()
gpt_model.resize_token_embeddings(len(tokenizer))
To use model, pass text, the loaded model and tokenizer into the gpt_model()
function,
def gpt_model(block_text, model, tokenizer):
block_dict = {
# add labels here
"Use Case":None
}
for label in block_dict:
prompt = f"<|startoftext|>Text: {block_text}\n{label}: "
token_prompt = tokenizer(f"{prompt}", return_tensors='pt', padding=True).input_ids.cuda()
output = model.generate(token_prompt, do_sample=False, top_k=50, max_length=512, top_p=0.80,
temperature=1.08, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id)
decode_output = tokenizer.decode(output[0], skip_special_tokens=True)
try:
block_dict[label] = re.findall(f"\n{label}: (.*)", decode_output)[-1]
except:
pass
return block_dict
returns dict containing predicted entities within text.
# Eg.
{'Use Case': "'unify contact centre, unified communications, and real-time communications API capabilities within a single software solution.'"}
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.