YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Crypto Project Classifier
This is a Hugging Face model built on FacebookAI/roberta-large, fine-tuned to classify Twitter accounts as crypto projects or non-crypto entities. The model takes as input a sentence containing the author's name and bio, and outputs a probability score and a classification (1 for a crypto project, 0 otherwise).
Model Details
- Language: English
- Base Model: FacebookAI/roberta-large
- Task: Sequence Classification
Example Input
hi i am {author_name}, i do this {twitter_bio}
How to Use
Below is a sample Python script to use the model for classification:
import torch
import pandas as pd
from transformers import RobertaTokenizer, AutoModelForSequenceClassification
model_name = "yoursdevkalki/crypto_project_classifier"
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
projects_df = pd.read_csv("projects.csv")
test_df = projects_df.head(500)
def process_row(description):
inputs = tokenizer(description, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probability = torch.sigmoid(logits).numpy()[0][0] # Convert to probability
# Compute prediction
prediction = 1 if probability >= 0.6 else 0
return probability * 100, prediction
test_df["prob"], test_df["prediction"] = zip(*test_df["twitter_bio"].apply(process_row))
print(test_df)
Input Format
The input text should be structured as:
hi i am {author_name}, i do this {twitter_bio}
Outputs
- prob: The model's confidence in percentage (0–100%).
- prediction: Classification result (
1
for crypto project,0
for non-project).
Dataset
The model was trained on a dataset of 40k samples:
- 20k Crypto Projects (labeled as
1
) - 20k Non-Crypto Entities (labeled as
0
)
Metrics Achieved
- F1 Score: >90%
- Accuracy: >90%
Donations
If you find this model useful, consider supporting its development:
- Solana Address:
2oiBTZ3QvTbsns4babAW54PHcKzacYG3MXUcpAMp7LKV
- Ethereum Address:
0x56a28F1Bd2CD4E2AAA386aeA1c30a24A2f854Ec4
Reach Out
- Twitter: @yourdevkalki
- Email:
yourdevkalki@gmail.com
- Downloads last month
- 10