Edit model card

🦜 EmertonOmniBeagle-7B-dpo

EmertonOmniBeagle-7B-dpo is a DPO fine-tune of mlabonne/OmniBeagle14-7B using the yleo/emerton_dpo_pairs preference dataset created from Intel/orca_dpo_pairs by replacing gpt 3.5 answer by a gpt4 Turbo answer. Then, gpt4 Turbo is put as chosen whereas gpt4 is put as rejected.

πŸ” Applications

This model uses a context window of 8k. It is compatible with different templates, like chatml and Llama's chat template.

πŸ† Evaluation

Open LLM Leaderboard

To come...

πŸ’» Usage

!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "yleo/EmertonOmniBeagle14-7B"
messages = [{"role": "user", "content": "How to improve LLM fine-tuning?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
12
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yleo/EmertonOmniBeagle-7B-dpo

Quantizations
1 model

Dataset used to train yleo/EmertonOmniBeagle-7B-dpo