Edit model card

bert-petco-text_content-ctr

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0034
  • Mse: 0.0034
  • Rmse: 0.0586
  • Mae: 0.0408
  • R2: 0.4036
  • Accuracy: 0.6833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mse Rmse Mae R2 Accuracy
0.0239 1.0 15 0.0049 0.0049 0.0701 0.0519 0.1473 0.5833
0.0095 2.0 30 0.0047 0.0047 0.0688 0.0537 0.1774 0.5667
0.0071 3.0 45 0.0057 0.0057 0.0756 0.0643 0.0065 0.4
0.0062 4.0 60 0.0046 0.0046 0.0675 0.0544 0.2089 0.5
0.0058 5.0 75 0.0048 0.0048 0.0692 0.0495 0.1682 0.6833
0.0048 6.0 90 0.0046 0.0046 0.0678 0.0543 0.2014 0.5
0.0042 7.0 105 0.0039 0.0039 0.0621 0.0465 0.3295 0.6833
0.0034 8.0 120 0.0038 0.0038 0.0617 0.0444 0.3382 0.6667
0.0031 9.0 135 0.0040 0.0040 0.0630 0.0462 0.3106 0.6667
0.0037 10.0 150 0.0040 0.0040 0.0629 0.0439 0.3140 0.7167
0.0028 11.0 165 0.0041 0.0041 0.0638 0.0439 0.2942 0.6833
0.0027 12.0 180 0.0041 0.0041 0.0642 0.0447 0.2854 0.7167
0.0026 13.0 195 0.0036 0.0036 0.0598 0.0422 0.3788 0.7
0.0025 14.0 210 0.0034 0.0034 0.0587 0.0420 0.4021 0.6833
0.002 15.0 225 0.0034 0.0034 0.0586 0.0408 0.4036 0.6833
0.0022 16.0 240 0.0037 0.0037 0.0607 0.0420 0.3610 0.7
0.0019 17.0 255 0.0037 0.0037 0.0607 0.0416 0.3595 0.7167
0.0018 18.0 270 0.0037 0.0037 0.0612 0.0423 0.3493 0.6833
0.0018 19.0 285 0.0036 0.0036 0.0597 0.0409 0.3804 0.7167
0.0019 20.0 300 0.0035 0.0035 0.0589 0.0407 0.3967 0.6667

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yimiwang/bert-petco-text_content-ctr

Finetuned
(2060)
this model