SentenceTransformer based on TaylorAI/bge-micro-v2
This is a sentence-transformers model finetuned from TaylorAI/bge-micro-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TaylorAI/bge-micro-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("training")
# Run inference
sentences = [
'Carbuncle, unspecified',
'Cutaneous abscess, furuncle and carbuncle, unspecified',
'Furuncle of neck',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 160,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 15.92 tokens
- max: 47 tokens
- min: 4 tokens
- mean: 15.81 tokens
- max: 41 tokens
- min: 3 tokens
- mean: 15.75 tokens
- max: 45 tokens
- Samples:
anchor positive negative Sudden visual loss, right eye
Sudden visual loss
Visual distortions of shape and size
Drug/chem diab with mild nonp rtnop without mclr edema, unsp Drug or chemical
Drug/chem diab with mod nonp rtnop with macular edema, bi Drug or
Hypostatic pneumonia, unspecified organism
Bronchiectasis with (acute) exacerbation
Bronchiectasis
Gestatnl htn w/o significant proteinuria, second trimester
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16max_steps
: 10000
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 10000lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.005 | 50 | 3.9819 |
0.01 | 100 | 3.8181 |
0.015 | 150 | 3.7244 |
0.02 | 200 | 3.6362 |
0.025 | 250 | 3.5459 |
0.03 | 300 | 3.4653 |
0.035 | 350 | 3.4066 |
0.04 | 400 | 3.3441 |
0.045 | 450 | 3.3497 |
0.05 | 500 | 3.2625 |
0.055 | 550 | 3.1359 |
0.06 | 600 | 3.1542 |
0.065 | 650 | 3.1528 |
0.07 | 700 | 3.1634 |
0.075 | 750 | 3.0737 |
0.08 | 800 | 3.1022 |
0.085 | 850 | 3.0288 |
0.09 | 900 | 2.9434 |
0.095 | 950 | 2.9014 |
0.1 | 1000 | 3.0412 |
0.105 | 1050 | 2.9844 |
0.11 | 1100 | 2.845 |
0.115 | 1150 | 2.9053 |
0.12 | 1200 | 2.8447 |
0.125 | 1250 | 2.8222 |
0.13 | 1300 | 2.8545 |
0.135 | 1350 | 2.7114 |
0.14 | 1400 | 2.7586 |
0.145 | 1450 | 2.6997 |
0.15 | 1500 | 2.5484 |
0.155 | 1550 | 2.7853 |
0.16 | 1600 | 2.6711 |
0.165 | 1650 | 2.7364 |
0.17 | 1700 | 2.8237 |
0.175 | 1750 | 2.737 |
0.18 | 1800 | 2.7059 |
0.185 | 1850 | 2.6577 |
0.19 | 1900 | 2.777 |
0.195 | 1950 | 2.7369 |
0.2 | 2000 | 2.6317 |
0.205 | 2050 | 2.6678 |
0.21 | 2100 | 2.6889 |
0.215 | 2150 | 2.5734 |
0.22 | 2200 | 2.7214 |
0.225 | 2250 | 2.5059 |
0.23 | 2300 | 2.623 |
0.235 | 2350 | 2.6761 |
0.24 | 2400 | 2.5663 |
0.245 | 2450 | 2.6678 |
0.25 | 2500 | 2.5856 |
0.255 | 2550 | 2.5436 |
0.26 | 2600 | 2.6359 |
0.265 | 2650 | 2.6266 |
0.27 | 2700 | 2.5698 |
0.275 | 2750 | 2.5611 |
0.28 | 2800 | 2.6306 |
0.285 | 2850 | 2.658 |
0.29 | 2900 | 2.5878 |
0.295 | 2950 | 2.553 |
0.3 | 3000 | 2.5295 |
0.305 | 3050 | 2.5211 |
0.31 | 3100 | 2.6489 |
0.315 | 3150 | 2.6131 |
0.32 | 3200 | 2.7298 |
0.325 | 3250 | 2.5931 |
0.33 | 3300 | 2.5927 |
0.335 | 3350 | 2.5403 |
0.34 | 3400 | 2.4497 |
0.345 | 3450 | 2.6764 |
0.35 | 3500 | 2.5673 |
0.355 | 3550 | 2.6134 |
0.36 | 3600 | 2.6298 |
0.365 | 3650 | 2.5747 |
0.37 | 3700 | 2.6245 |
0.375 | 3750 | 2.5275 |
0.38 | 3800 | 2.5541 |
0.385 | 3850 | 2.5469 |
0.39 | 3900 | 2.452 |
0.395 | 3950 | 2.483 |
0.4 | 4000 | 2.5592 |
0.405 | 4050 | 2.4209 |
0.41 | 4100 | 2.6014 |
0.415 | 4150 | 2.3952 |
0.42 | 4200 | 2.5131 |
0.425 | 4250 | 2.4455 |
0.43 | 4300 | 2.5441 |
0.435 | 4350 | 2.5412 |
0.44 | 4400 | 2.3887 |
0.445 | 4450 | 2.5183 |
0.45 | 4500 | 2.4578 |
0.455 | 4550 | 2.5733 |
0.46 | 4600 | 2.6645 |
0.465 | 4650 | 2.5156 |
0.47 | 4700 | 2.4689 |
0.475 | 4750 | 2.4995 |
0.48 | 4800 | 2.6219 |
0.485 | 4850 | 2.605 |
0.49 | 4900 | 2.4358 |
0.495 | 4950 | 2.6028 |
0.5 | 5000 | 2.5858 |
0.505 | 5050 | 2.3894 |
0.51 | 5100 | 2.6398 |
0.515 | 5150 | 2.4805 |
0.52 | 5200 | 2.5322 |
0.525 | 5250 | 2.4 |
0.53 | 5300 | 2.4541 |
0.535 | 5350 | 2.5067 |
0.54 | 5400 | 2.5244 |
0.545 | 5450 | 2.5514 |
0.55 | 5500 | 2.4608 |
0.555 | 5550 | 2.5884 |
0.56 | 5600 | 2.4291 |
0.565 | 5650 | 2.6395 |
0.57 | 5700 | 2.3873 |
0.575 | 5750 | 2.652 |
0.58 | 5800 | 2.5328 |
0.585 | 5850 | 2.5713 |
0.59 | 5900 | 2.4961 |
0.595 | 5950 | 2.4438 |
0.6 | 6000 | 2.5537 |
0.605 | 6050 | 2.6323 |
0.61 | 6100 | 2.6427 |
0.615 | 6150 | 2.5648 |
0.62 | 6200 | 2.4444 |
0.625 | 6250 | 2.6298 |
0.63 | 6300 | 2.583 |
0.635 | 6350 | 2.6873 |
0.64 | 6400 | 2.5556 |
0.645 | 6450 | 2.5652 |
0.65 | 6500 | 2.618 |
0.655 | 6550 | 2.4977 |
0.66 | 6600 | 2.5805 |
0.665 | 6650 | 2.4989 |
0.67 | 6700 | 2.5527 |
0.675 | 6750 | 2.5616 |
0.68 | 6800 | 2.5378 |
0.685 | 6850 | 2.5159 |
0.69 | 6900 | 2.6366 |
0.695 | 6950 | 2.5066 |
0.7 | 7000 | 2.498 |
0.705 | 7050 | 2.5416 |
0.71 | 7100 | 2.5362 |
0.715 | 7150 | 2.5541 |
0.72 | 7200 | 2.5598 |
0.725 | 7250 | 2.4584 |
0.73 | 7300 | 2.6006 |
0.735 | 7350 | 2.5072 |
0.74 | 7400 | 2.4681 |
0.745 | 7450 | 2.4808 |
0.75 | 7500 | 2.5695 |
0.755 | 7550 | 2.5131 |
0.76 | 7600 | 2.5227 |
0.765 | 7650 | 2.5553 |
0.77 | 7700 | 2.4966 |
0.775 | 7750 | 2.4811 |
0.78 | 7800 | 2.5081 |
0.785 | 7850 | 2.5916 |
0.79 | 7900 | 2.4911 |
0.795 | 7950 | 2.5778 |
0.8 | 8000 | 2.5111 |
0.805 | 8050 | 2.5094 |
0.81 | 8100 | 2.5456 |
0.815 | 8150 | 2.5445 |
0.82 | 8200 | 2.5531 |
0.825 | 8250 | 2.6358 |
0.83 | 8300 | 2.5247 |
0.835 | 8350 | 2.4117 |
0.84 | 8400 | 2.5442 |
0.845 | 8450 | 2.537 |
0.85 | 8500 | 2.4553 |
0.855 | 8550 | 2.6114 |
0.86 | 8600 | 2.4397 |
0.865 | 8650 | 2.5667 |
0.87 | 8700 | 2.5281 |
0.875 | 8750 | 2.4894 |
0.88 | 8800 | 2.5723 |
0.885 | 8850 | 2.5952 |
0.89 | 8900 | 2.4053 |
0.895 | 8950 | 2.4827 |
0.9 | 9000 | 2.5784 |
0.905 | 9050 | 2.4545 |
0.91 | 9100 | 2.527 |
0.915 | 9150 | 2.5998 |
0.92 | 9200 | 2.4528 |
0.925 | 9250 | 2.5195 |
0.93 | 9300 | 2.5508 |
0.935 | 9350 | 2.5952 |
0.94 | 9400 | 2.607 |
0.945 | 9450 | 2.5086 |
0.95 | 9500 | 2.4972 |
0.955 | 9550 | 2.4919 |
0.96 | 9600 | 2.5147 |
0.965 | 9650 | 2.4523 |
0.97 | 9700 | 2.6027 |
0.975 | 9750 | 2.4286 |
0.98 | 9800 | 2.5617 |
0.985 | 9850 | 2.4994 |
0.99 | 9900 | 2.6527 |
0.995 | 9950 | 2.538 |
1.0 | 10000 | 2.4506 |
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yhyhy3/training
Base model
TaylorAI/bge-micro-v2