Edit model card

OndeviceAI-base

This model is a fine-tuned version of paust/pko-t5-base on the None dataset.

How to use

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import List
 
tokenizer = AutoTokenizer.from_pretrained("yeye776/OndeviceAI-base")
model = AutoModelForSeq2SeqLM.from_pretrained("yeye776/OndeviceAI-base")
 
prompt = "분류 및 인식해줘 :"
def prepare_input(question: str):
    inputs = f"{prompt} {question}"
    input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids
    return input_ids
 
def inference(question: str) -> str:
    input_data = prepare_input(question=question)
    input_data = input_data.to(model.device)
    outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=1024)
 
    result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
 
    return result
 
inference("안방 조명 켜줘")

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0007
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10

Training results

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
5
Safetensors
Model size
276M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yeye776/OndeviceAI-base

Base model

paust/pko-t5-base
Finetuned
(8)
this model