jako-xlsr

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the ./SAMPLE_SPEECH.PY - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9486
  • Cer: 0.2606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Cer
3.5667 1.14 1000 2.2323 0.5188
1.5569 2.28 2000 1.3106 0.3527
1.2238 3.43 3000 1.1109 0.3099
1.0593 4.57 4000 1.0390 0.2891
0.9658 5.71 5000 0.9731 0.2918
0.8796 6.85 6000 0.9479 0.2696
0.8022 8.0 7000 0.9331 0.2710
0.7392 9.14 8000 0.9252 0.2746
0.6694 10.28 9000 0.9318 0.2590
0.5977 11.42 10000 0.9349 0.2674
0.5484 12.56 11000 0.9409 0.2555
0.5154 13.71 12000 0.9510 0.2719
0.4767 14.85 13000 0.9556 0.2624
0.4536 15.99 14000 0.9850 0.2684
0.4195 17.13 15000 0.9894 0.2590
0.3937 18.28 16000 1.0197 0.2698

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yesj1234/xlsr_jako_exp1

Finetuned
(209)
this model