Edit model card

Acknowledge license to accept the repository.

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Please contact the author for access.

Log in or Sign Up to review the conditions and access this model content.

Taiwan LLM Logo

🌟 Checkout Taiwan-LLM Demo Chat-UI 🌟

Model Card for Taiwan LLM 7B v2.0.1 chat

Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan. Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning. This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances. It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance. For detailed insights into Taiwan LLM's development and features, refer to our technical report.

Model description

  • Model type: A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
  • Language(s) (NLP): Primarily Traditional Chinese (zh-tw)
  • Finetuned from model: yentinglin/Taiwan-LLM-7B-v2.0-base

Model Sources



Intended uses

Here's how you can run the model using the pipeline() function from 🤗 Transformers:

# pip install transformers>=4.34
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-7B-v2.0.1-chat", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
        "role": "system",
        "content": "你是一個人工智慧助理",
    {"role": "user", "content": "東北季風如何影響台灣氣候?"},
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)

Training hyperparameters




The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 5.0


If you find Taiwan LLM is useful in your work, please cite it with:

      title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model}, 
      author={Yen-Ting Lin and Yun-Nung Chen},


Taiwan LLM v2 is conducted in collaboration with Ubitus K.K.. Ubitus provides valuable compute resources for the project.

Downloads last month
Model size
6.74B params
Tensor type

Collection including yentinglin/Taiwan-LLM-7B-v2.0.1-chat